Results 51 to 60 of about 32,714 (245)
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
This review explores functional and responsive materials for triboelectric nanogenerators (TENGs) in sustainable smart agriculture. It examines how particulate contamination and dirt affect charge transfer and efficiency. Environmental challenges and strategies to enhance durability and responsiveness are outlined, including active functional layers ...
Rafael R. A. Silva +9 more
wiley +1 more source
This study investigates the effect of initial delamination on the fatigue behavior and lifespan of composite laminates made of woven glass fabric and epoxy resin.
Amir Mohammad Feizi +1 more
doaj +1 more source
Device Integration Technology for Practical Flexible Electronics Systems
Flexible device integration technologies are essential for realizing practical flexible electronic systems. In this review paper, wiring and bonding techniques critical for the industrial‐scale manufacturing of wearable devices are emphasized based on flexible electronics.
Masahito Takakuwa +5 more
wiley +1 more source
Covalent Organic Frameworks for Water Sorption: The Importance of Framework Physical Stability
This study explores the water‐vapor stability of 2D covalent organic frameworks (COFs) with varying pore sizes. Results reveal microporous COFs demonstrate superior stability compared to mesoporous ones, despite lower water uptake. Mesoporous keto‐enamine‐linked COFs show enhanced stability due to intralayer hydrogen bonds, confirmed by simulations and
Wei Zhao +13 more
wiley +1 more source
Effect of delamination interface angle on Mode Ⅱ delamination behavior of CFRP laminates
Mode Ⅱ interlaminar fracture toughness is an indispensable mechanical performance parameter for damage tolerance design of composite structure. The domestic T300 composite end notched flexure (ENF) specimens with five different delamination interfaces ...
ZHAO Wei, WANG Ya-na, WANG Xiang
doaj +1 more source
Cross‐linked binders with enhanced resiliencies under low operating pressures are designed via in situ thiol‐ene click reactions within slurries. Cross‐linking improves the Young's moduli and elasticities of the styrene‐butadiene rubber binders, effectively mitigating interparticle delamination within the composite cathodes induced by volumetric ...
Young Joon Park +9 more
wiley +1 more source
Guided by the golden ratio, a class of aperiodic architected metamaterials is introduced to address the intrinsic trade‐off between strength and toughness. By unifying local geometric heterogeneity with global order, the golden‐ratio‐guided aperiodic architecture promotes spatial delocalization of damage tolerence regions, leading to more tortuous ...
Junjie Deng +9 more
wiley +1 more source
Short review: Potential impact of delamination cracks on fracture toughness of structural materials
The current energy policy envisages extended lifetime for the current nuclear power plants (GEN II NPP). This policy imposes a large research effort to understand the ageing of power plant components.
X.C. Arnoult +3 more
doaj

