Results 131 to 140 of about 67,165 (262)

Mechanical Overloading‐Induced Nanomineral Crystal Perturbation from the Osteochondral Interface: A Potential Initiator of Osteoarthritis

open access: yesAdvanced Science, EarlyView.
Laser‐induced graphene (LIG) provides a scalable, laser‐direct‐written route to porous graphene architecture with tunable chemistry and defect density. Through heterojunction engineering, catalytic functionalization, and intrinsic self‐heating, LIG achieves highly sensitive and selective detection of NOX, NH3, H2, and humidity, supporting next ...
Nan Jiang   +8 more
wiley   +1 more source

Estudo epidemiológico das fraturas coronárias em pacientes atendidos em um projeto de trauma dental em um período de 6 anos

open access: green, 2013
Ricardo Guimarães de Carvalho   +8 more
openalex   +2 more sources

Osteoclast‐Derived SLIT3 Mediates Osteoarthritis Pain and Degenerative Changes

open access: yesAdvanced Science, EarlyView.
In TMJ‐OA, osteoclasts play a significant role in promoting the growth of sensory nerves at the osteochondral interface. In early OA, TRAP+ osteoclast‐derived SLIT3 induces sensory nerve growth into the condylar cartilage. This nerve growth facilitates the development of pain associated with OA.
Weiwei Zhu   +13 more
wiley   +1 more source

Awareness of emergency management of dental trauma

open access: gold, 2014
Ayushi Jindal   +5 more
openalex   +1 more source

AXL Promotes Ischemic Myelin Repair Through Alleviating Myelin Debris Deposition and Lipid Droplets Accumulation

open access: yesAdvanced Science, EarlyView.
Microglial AXL drives white matter repair after stroke by orchestrating the cleanup of myelin debris. Mechanistically, AXL signals through EGR1 to boost Smpd1 transcription, regulating sphingolipid metabolism and preventing lipid droplet toxicity. Restoring the pathway with ASM therapy mitigates damage, positioning AXL as a key node for therapeutic ...
Junqiu Jia   +13 more
wiley   +1 more source

Arginine Methylation Antagonizes TEAD3‐Mediated Repression to Promote Osteogenic Differentiation by Disrupting RUNX2‐Sequestrating Condensates

open access: yesAdvanced Science, EarlyView.
In the unmethylated state, TEAD forms stable, repressive condensates that sequester the osteogenic master regulator RUNX2. Arginine methylation of TEAD at R55 acts as a molecular brake, dissolving these condensates to release RUNX2 and activate the osteogenic program.
Lei Cao   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy