Results 51 to 60 of about 28,020 (301)

Growth Hormone‐Loaded 3D Printed Silk Fibroin‐Cellulose Dressings for Ischemic Wounds

open access: yesAdvanced Healthcare Materials, EarlyView.
3D‐printed wound dressings combining carboxymethyl cellulose, silk fibroin, and growth hormone accelerate healing in diabetic ulcers. These bioactive, customizable dressings enhance angiogenesis, cellular proliferation, and immune modulation. Proteomic analysis reveals activation of regenerative pathways and reduced fibrosis, highlighting their ...
Maria Pita‐Vilar   +7 more
wiley   +1 more source

Body Biofluids for Minimally‐Invasive Diagnostics: Insights, Challenges, Emerging Technologies, and Clinical Potential

open access: yesAdvanced Healthcare Materials, EarlyView.
Recent advances in diagnostics have accelerated the development of miniaturized wearable technologies for the continuous monitoring of diseases. This paradigm is shifting healthcare away from invasive, centralized blood tests toward decentralized monitoring, using alternative body biofluids.
Lanka Tata Rao   +2 more
wiley   +1 more source

Advances in Bioprinting to Model Immune‐Mediated Skin Diseases

open access: yesAdvanced Healthcare Materials, EarlyView.
This review explores how 3D bioprinting drives innovation in developing in vitro skin models that mimic immune‐mediated diseases. It highlights current technologies, key applications in studying skin pathologies, and emerging challenges. The review points toward future opportunities for improving disease modeling and advancing therapeutic and cosmetic ...
Andrea Ulloa‐Fernández   +4 more
wiley   +1 more source

Metformin Restores Mitochondrial Function and Neurogenesis in POLG Patient‐Derived Brain Organoids

open access: yesAdvanced Science, EarlyView.
Patient‐derived POLG‐mutant cortical organoids reveal neuronal subtype‐specific mitochondrial and synaptic defects, with dopaminergic neurons most affected. Metformin treatment restores neuronal identity, mitochondrial function, and excitability, increased mtDNA maintenance, and reprogrammed metabolism via TCA and redox pathways.
Zhuoyuan Zhang   +6 more
wiley   +1 more source

CARD9 Conveys Pancreatic Islet Sympathetic Nervous β2 Signals to Reshape Macrophage Creatine Metabolism in Type 1 Diabetes

open access: yesAdvanced Science, EarlyView.
This study identifies CARD9 as a key mediator linking sympathetic β2‐adrenergic receptor signaling to macrophage creatine metabolism, inflammatory polarization, and neuronal integrity. Loss of β2‐AR‐PKA‐CREB1‐CARD9 signaling in macrophages reduces creatine uptake, promotes pro‐inflammatory macrophage activation, and drives sympathetic axon ferroptosis.
Huimin Yuan   +12 more
wiley   +1 more source

Cell Therapy for Diabetic Neuropathy Using Adult Stem or Progenitor Cells [PDF]

open access: yesDiabetes & Metabolism Journal, 2013
Diabetic neuropathy (DN) is the most common and disabling complication of diabetes that may lead to foot ulcers and limb amputations. Despite widespread awareness of DN, the only effective treatments are glucose control and pain management.
Ji Woong Han   +2 more
doaj   +1 more source

Midkine‐Mediated Microglia Activation after Renal Injury Promotes Cognitive Impairment Following Ischemic Renal Injury

open access: yesAdvanced Science, EarlyView.
The mechanism of secondary cognitive impairment following AKI. When renal ischemic injury progresses to fibrosis, renal fibroblasts and damaged tubular cells secrete MDK, which circulates through the bloodstream, crosses the damaged BBB, and accumulates in the hippocampus tissue (an area crucial for learning and memory).
Li Lu   +10 more
wiley   +1 more source

Effects of foot-ankle exercises on foot-ankle kinematics, plantar pressure, and gait kinetics in people with diabetic neuropathy: Secondary outcomes from a randomized controlled trial [PDF]

open access: green, 2023
Renan Lima Monteiro   +6 more
openalex   +1 more source

Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy

open access: yesAdvanced Science, EarlyView.
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy