Results 161 to 170 of about 12,385 (209)
Shellac, a centuries‐old natural resin, is reimagined as a green material for flexible electronics. When combined with silver nanowires, shellac films deliver transparency, conductivity, and stability against humidity. These results position shellac as a sustainable alternative to synthetic polymers for transparent conductors in next‐generation ...
Rahaf Nafez Hussein +4 more
wiley +1 more source
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han +17 more
wiley +1 more source
Electroactive Metal–Organic Frameworks for Electrocatalysis
Electrocatalysis is crucial in sustainable energy conversion as it enables efficient chemical transformations. The review discusses how metal–organic frameworks can revolutionize this field by offering tailorable structures and active site tunability, enabling efficient and selective electrocatalytic processes.
Irena Senkovska +7 more
wiley +1 more source
Photoswitching Conduction in Framework Materials
This mini‐review summarizes recent advances in state‐of‐the‐art proton and electron conduction in framework materials that can be remotely and reversibly switched on and off by light. It discusses the various photoswitching conduction mechanisms and the strategies employed to enhance photoswitched conductivity.
Helmy Pacheco Hernandez +4 more
wiley +1 more source
Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath +6 more
wiley +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source
There is a significant need for biomaterials with well‐defined stability and bioactivity to support tissue regeneration. In this study, we developed a tunable microgel platform that enables the decoupling of stiffness from porosity, thereby promoting bone regeneration.
Silvia Pravato +9 more
wiley +1 more source
Backbone Heterojunction Photocatalysts for Efficient Sacrificial Hydrogen Production
Herein, a ‘single‐component’ organic semiconductor photocatalyst is presented in which a molecular donor is bonded to a polymer acceptor. The resultant material demonstrates exceptional photocatalytic activity for hydrogen evolution in aqueous triethylamine with an outstanding external quantum efficiency of 38% at 420 nm.
Richard J. Lyons +11 more
wiley +1 more source
Dataset on the tested and simulated response of thick cold-formed circular hollow sections under cyclic loading. [PDF]
Sadowski AJ +3 more
europepmc +1 more source
Self‐Immolative Activatable Nanoassembly toward Immuno‐Photodynamic Therapy in TME
A quinone methide‐gated, self‐immolative, H2O2‐responsive nano‐photosensitizer (Pyz/PS) is developed for targeted immuno‐photodynamic therapy. Pyz/PS selectively activates within tumor microenvironments, restores photosensitizer activity, generates ROS, and depletes intracellular GSH, enhancing oxidative stress.
Jing Li +10 more
wiley +1 more source

