Results 111 to 120 of about 1,797,841 (315)

Boolean differential equations

open access: yesDiscrete Mathematics, 1995
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
openaire   +3 more sources

Unraveling LINE‐1 retrotransposition in head and neck squamous cell carcinoma

open access: yesMolecular Oncology, EarlyView.
The novel RetroTest method allows the detection of L1 activation in clinical samples with low DNA input, providing global L1 activity and the identification of the L1 source element. We applied RetroTest to a real‐world cohort of HNSCC patients where we reported an early L1 activation, with more than 60% of T1 patients showing L1 activity.
Jenifer Brea‐Iglesias   +12 more
wiley   +1 more source

EMT‐associated bias in the Parsortix® system observed with pancreatic cancer cell lines

open access: yesMolecular Oncology, EarlyView.
The Parsortix® system was tested for CTC enrichment using pancreatic cancer cell lines with different EMT phenotypes. Spike‐in experiments showed lower recovery of mesenchymal‐like cells. This was confirmed with an EMT‐inducible breast cancer cell line.
Nele Vandenbussche   +8 more
wiley   +1 more source

On rough differential equations

open access: yesElectronic Journal of Probability, 2009
We prove that the Ito map, that is the map that gives the solution of a differential equation controlled by a rough path of finite p-variation with p in [2,3) is locally Lipschitz continuous in all its arguments and could be extended to vector fields that have only a linear growth.
openaire   +4 more sources

Tumor clusters with divergent inflammation and human retroelement expression determine the clinical outcome of patients with serous ovarian cancer

open access: yesMolecular Oncology, EarlyView.
Analysis of treatment‐naïve high‐grade serous ovarian carcinoma (HGSOC) and control tissues for ERVs, LINE‐1 (L1), inflammation, and immune checkpoints identified five clusters with diverse patient recurrence‐free survivals. An inflammation score was calculated and correlated with retroelement expression, where one novel cluster (Triple‐I) with high ...
Laura Glossner   +6 more
wiley   +1 more source

EGFR‐STAT3 activation provides a therapeutic rationale for targeting aggressive ETV1‐positive prostate cancer

open access: yesMolecular Oncology, EarlyView.
Cotargeting EGFR and STAT3 with Erlotinib and TTI‐101 impairs both 2D and 3D growth of ETV1‐overexpressing prostate cancer cells by disrupting a self‐sustaining ETV1–EGFR positive feedback loop that promotes EGFR and STAT3 expression and phosphorylation (activation).
Elsa Gomes Paiva   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy