Results 231 to 240 of about 224,819 (313)

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Joint Control of Radiated and Surface Waves via Space‐Time Coding Metasurfaces

open access: yesAdvanced Functional Materials, EarlyView.
A unified space‐time coding metasurface platform enables simultaneous control of radiated and surface‐confined waves across multiple harmonics. Demonstrated functionalities include multi‐frequency beam shaping; surface‐wave excitation, and hybrid multiplexing.
Zihao Dai   +6 more
wiley   +1 more source

Energy‐Efficient Bulk Photoalignment of Main‐Chain Liquid Crystalline Polymers Enabled by In Situ Monitoring

open access: yesAdvanced Functional Materials, EarlyView.
In situ monitoring of bulk photoalignment reveals how molecular weight, azobenzene content, cooling rate, and thickness govern ordering in main‐chain liquid crystalline polymers. Optimized copolymers exceed conventional thickness limits, maintaining stable alignment up to 130 µm with high energy efficiency and reversible optical patterning.
Jaechul Ju   +3 more
wiley   +1 more source

Spectrally Tunable 2D Material‐Based Infrared Photodetectors for Intelligent Optoelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent optoelectronics through spectral engineering of 2D material‐based infrared photodetectors. Abstract The evolution of intelligent optoelectronic systems is driven by artificial intelligence (AI). However, their practical realization hinges on the ability to dynamically capture and process optical signals across a broad infrared (IR) spectrum.
Junheon Ha   +18 more
wiley   +1 more source

Digital Discovery of Synthesizable Metal−Organic Frameworks via Molecular Dynamics‑Informed, High‑Fidelity Deep Learning

open access: yesAdvanced Functional Materials, EarlyView.
Tabular foundation model interrogates the synthetic likelihood of metal−organic frameworks. Abstract Metal–organic frameworks (MOFs) are celebrated for their chemical and structural versatility, and in‑silico screening has significantly accelerated their discovery; yet most hypothetical MOFs (hMOFs) never reach the bench because their synthetic ...
Xiaoyu Wu   +3 more
wiley   +1 more source

A Tracer Diffusion Study of Diverse Photo‐Ionic Phenomena in Strontium Titanate

open access: yesAdvanced Functional Materials, EarlyView.
Two strong interfacial photo‐ionic effects are demonstrated for the model system SrTiO3 through the application of isotope exchange experiments: UV illumination is found to enhance the oxygen surface exchange coefficient by several orders of magnitude and to depress the surface space‐charge potential substantially.
David M. Schwenkel   +3 more
wiley   +1 more source

Integrative Approaches for DNA Sequence‐Controlled Functional Materials

open access: yesAdvanced Functional Materials, EarlyView.
DNA is emerging as a programmable building block for functional materials with applications in biomimicry, biochemical, and mechanical information processing. The integration of simulations, experiments, and machine learning is explored as a means to bridge DNA sequences with macroscopic material properties, highlighting current advances and providing ...
Aaron Gadzekpo   +4 more
wiley   +1 more source

Trap‐Modified Inverted Organic Photodetectors via Layer‐by‐Layer Processing with Poly(N‐vinylcarbazole) Additives

open access: yesAdvanced Functional Materials, EarlyView.
Trap state engineering in inverted organic photodetectors (OPDs) is achieved via combined layer‐by‐layer (LbL) processing and poly(N‐vinylcarbazole) (PVK) incorporation. LbL reduces the trap density while PVK additives gradually shift trap states from shallow band‐edge to deep mid‐gap levels, tailoring the energy distribution.
Jingwei Yi   +10 more
wiley   +1 more source

Home - About - Disclaimer - Privacy