Results 21 to 30 of about 11,399,904 (367)
Some recent results on the Dirichlet problem for $(p, q)$-Laplace equations [PDF]
A short account of recent existence and multiplicity theorems on the Dirichlet problem for an elliptic equation with $(p, q)$-Laplacian in a bounded domain is performed.
S. Marano, S. Mosconi
semanticscholar +1 more source
A viscosity approach to the Dirichlet problem for degenerate complex Hessian-type equations [PDF]
A viscosity approach is introduced for the Dirichlet problem associated to complex Hessian type equations on domains in $\C^n$. The arguments are modelled on the theory of viscosity solutions for real Hessian type equations developed by Trudinger.
S. Dinew, H. Do, T. Tô
semanticscholar +1 more source
On Ambarzumian type theorems for tree domains [PDF]
It is known that the spectrum of the spectral Sturm-Liouville problem on an equilateral tree with (generalized) Neumann's conditions at all vertices uniquely determines the potentials on the edges in the unperturbed case, i.e. case of the zero potentials
Vyacheslav Pivovarchik
doaj +1 more source
Dirichlet and Neumann Boundary Value Problems for the Polyharmonic Equation in the Unit Ball
In the previous author’s works, a representation of the solution of the Dirichlet boundary value problem for the biharmonic equation in terms of Green’s function is found, and then it is shown that this representation for a ball can be written in the ...
Valery Karachik
doaj +1 more source
On the exterior Dirichlet problem for special Lagrangian equations [PDF]
In this paper, we establish the existence and uniqueness theorem of the exterior Dirichlet problem for special Lagrangian equations with prescribed asymptotic behavior at infinity.
Zhisu Li
semanticscholar +1 more source
Recovering the shape of an equilateral quantum tree with the Dirichlet conditions at the pendant vertices [PDF]
We consider two spectral problems on an equilateral rooted tree with the standard (continuity and Kirchhoff's type) conditions at the interior vertices (except of the root if it is interior) and Dirichlet conditions at the pendant vertices (except of the
Anastasia Dudko+2 more
doaj +1 more source
Causality and the AdS Dirichlet problem [PDF]
The (planar) AdS Dirichlet problem has previously been shown to exhibit superluminal hydrodynamic sound modes. This problem is defined by bulk gravitational dynamics with Dirichlet boundary conditions imposed on a rigid timelike cut-off surface.
A Bagchi+27 more
core +2 more sources
Notions of Dirichlet problem for functions of least gradient in metric measure spaces [PDF]
We study two notions of Dirichlet problem associated with BV energy minimizers (also called functions of least gradient) in bounded domains in metric measure spaces whose measure is doubling and supports a $(1,1)$-Poincare inequality.
R. Korte+3 more
semanticscholar +1 more source
The potential gains of NOMA were evaluated in a satellite system with heterogeneous receivers, after considering the use of specific DVB‐S2X MODCODs, along with the impact of non‐linearities. It was concluded that a judicious power allocation in NOMA, jointly optimized with the IBO of the PAs, can yield significant sum‐rate gains.
Tomás Ramírez, Carlos Mosquera
wiley +1 more source
Interior Regularity Estimates for a Degenerate Elliptic Equation with Mixed Boundary Conditions
The Marchaud fractional derivative can be obtained as a Dirichlet-to–Neumann map via an extension problem to the upper half space. In this paper we prove interior Schauder regularity estimates for a degenerate elliptic equation with mixed Dirichlet ...
Jean-Daniel Djida, Arran Fernandez
doaj +1 more source