Results 211 to 220 of about 750,066 (346)

Scalable Upcycling of Spent Lithium‐Ion Battery Anodic Graphite to Electronic‐Grade Graphene

open access: yesAdvanced Science, EarlyView.
Graphite anodes from spent lithium‐ion batteries are upcycled into electronic‐grade graphene nanoplatelets for highly conductive screen printing inks (> 104 S m−1). Screen‐printed micro‐supercapacitors confirm the utility of the upcycled graphene (1.78 mF/cm2 capacitance for > 10 000 cycles). Life cycle assessment and techno‐economic analysis highlight
Janan Hui   +8 more
wiley   +1 more source

Life‐Cycle Assessment of Printed Electronic Components ‐ Case Study for Organic Electrochemical Transistors

open access: yesAdvanced Electronic Materials, EarlyView.
This tutorial introduces a practical framework for implementing early‐stage Life‐Cycle Assessment (LCA) in flexible and printed electronics. Using organic electrochemical transistors (OECTs) as a case study, the modular Process‐of‐Record and open‐access inventory provides a rich resource adaptable to a plethora of technologies in printed electronics ...
Laura Teuerle   +6 more
wiley   +1 more source

Ethical and Frugal Approaches to Animal Experimentation in Bioelectronics and Neural Engineering—An Invertebrate Renaissance?

open access: yesAdvanced Electronic Materials, EarlyView.
Invertebrates are the classic neuroscience models and should make a comeback. Invertebrate organisms can be a more ethical and cost‐effective way to move bioelectronics research forward more rapidly. ABSTRACT The accelerating development of bioelectronic neural interfaces has brought increased attention to ethical considerations surrounding in vivo ...
Eric Daniel Głowacki
wiley   +1 more source

Scalable Wheat Bran‐Algae Composites for Edible Electronics with Spray‐Coated Food‐Grade Conductive Inks

open access: yesAdvanced Electronic Materials, EarlyView.
A fully edible wheat bran–algae substrate is fabricated through scalable mould‐compression and spray‐coating, enabling robust, food‐grade platforms for sustainable electronics. A chitosan barrier improves water resistance and ink compatibility, while activated‐carbon conductive films form uniform electrodes with Ohmic behaviour.
Jaz Johari   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy