Results 131 to 140 of about 941,193 (321)

Anionic Citrate‐Based 3D‐Printed Scaffolds for Tunable and Sustained Orthobiologic Delivery to Enhance Tissue Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A potent anionic citric acid‐based 3D‐printed scaffold is developed for the sustained and controlled release of orthobiologics to enhance orthopedic therapeutic efficacy. Comprehensive in vivo studies demonstrated effective bone fusion and high safety at a low dose of BMP‐2 delivered by the system, establishing it as a promising platform for safe ...
Se‐Hwan Lee   +12 more
wiley   +1 more source

Machine Learning Guided Design of Nerve‐On‐A‐Chip Platforms with Promoted Neurite Outgrowth

open access: yesAdvanced Functional Materials, EarlyView.
Compared to labor‐intensive trial‐and‐error experimentation, a machine learning (ML)‐guided workflow, incorporating cell viability assays, data augmentation, ensemble modeling, and model interpretation, is developed to accelerate nerve‐on‐a‐chip optimization and uncover data‐driven design principles.
Tsai‐Chun Chung   +8 more
wiley   +1 more source

FeDSNP‐Pa Nanoassemblies: A Triple‐Action Therapeutic Strategy Targeting Oxidative Stress, Inflammation, and Pyroptosis for Retinal Ganglion Cell Protection in Glaucoma

open access: yesAdvanced Functional Materials, EarlyView.
FeDSNP‐Pa, a metallized nanoparticle loaded with sodium pyruvate (Pa), exerts triple therapeutic effects by scavenging reactive oxygen species (ROS), suppressing inflammatory responses, and inhibiting pyroptosis signaling pathways. This multifunctional neuroprotective strategy protecting retinal ganglion cells (RGCs) from elevated intraocular pressure ...
Yukun Wu   +5 more
wiley   +1 more source

Cell‐Delivering Injectable Hydrogels with Tunable Microporous Structures Improve Therapeutic Efficacy for Volumetric Muscle Loss

open access: yesAdvanced Functional Materials, EarlyView.
The study presents an injectable hydrogel with tunable microporosity to improve mesenchymal stem cell delivery for volumetric muscle loss treatment. Mesenchymal stem cells encapsulated in porous hydrogels significantly promote the spreading, proliferation, and cytokine secretion of mesenchymal stem cells.
Hana Yasue   +3 more
wiley   +1 more source

Artificial Intelligence‐Driven Development in Rechargeable Battery Materials: Progress, Challenges, and Future Perspectives

open access: yesAdvanced Functional Materials, EarlyView.
AI is transforming the research paradigm of battery materials and reshaping the entire landscape of battery technology. This comprehensive review summarizes the cutting‐edge applications of AI in the advancement of battery materials, underscores the critical challenges faced in harnessing the full potential of AI, and proposes strategic guidance for ...
Qingyun Hu   +5 more
wiley   +1 more source

Dissections of a simplex [PDF]

open access: yesBulletin of the American Mathematical Society, 1973
Alexanderson, G. L., Wetzel, John E.
openaire   +3 more sources

Home - About - Disclaimer - Privacy