Results 41 to 50 of about 1,232,284 (259)
Near-Linear Query Complexity for Graph Inference
How efficiently can we find an unknown graph using distance or shortest path queries between its vertices? Let $G = (V,E)$ be an unweighted, connected graph of bounded degree.
Kannan, Sampath +2 more
core +1 more source
In this paper, we consider a simple connected graph having no loops and multiple edges. The order and size of are denoted by and respectively in graphs is a wide branch of graph theory having many scientific and real-life applications. There are various types of distances studied in the literature.The distance is the length of the shortest path ...
null V. Thamarai Selvi +1 more
openaire +1 more source
Distance Domination in Vertex Partitioned Graphs
We treat a variation of graph domination which involves a partition (V 1, V 2,..., Vk) of the vertex set of a graph G and domination of each partition class V i over distance d where all vertices and edges of G may be used in the domination process. Strict upper bounds and extremal graphs are presented; the results are collected in three handy tables ...
Frendrup, Allan +2 more
openaire +2 more sources
Graph Domination in Distance Two
A subgraph \(D\) of a graph \(G\) is \(k\)-dominating in \(G\) if every vertex of \(G-D\) is of distance \(\leq k\) from a vertex of \(D\). If \(\mathcal D\) is a specified class of graphs, Dom\(_k \mathcal D\) consists of all those graphs \(G\) in which every connected induced subgraph \(H\) has a \(k\)-dominating induced subgraph \(D \in {\mathcal D}\
Bacsó, Gábor +2 more
openaire +2 more sources
A comprehensive genomic and proteomic analysis of cervical cancer revealed STK11 and STX3 as a potential biomarkers of chemoradiation resistance. Our study demonstrated EGFR as a therapeutic target, paving the way for precision strategies to overcome treatment failure and the DNA repair pathway as a critical mechanism of resistance.
Janani Sambath +13 more
wiley +1 more source
Distance independence in graphs
For a set D of positive integers, we define a vertex set SV (G) to be D-independent if u,v 2 S implies the distance d(u,v) 㘲 D. The D-independence numberD(G) is the maximum cardinality of a D-independent set. In particular, the independence number (G) = {1}(G).
J.Louis Sewell, Peter J. Slater
openaire +1 more source
Strong sum distance in fuzzy graphs [PDF]
In this paper the idea of strong sum distance which is a metric, in a fuzzy graph is introduced. Based on this metric the concepts of eccentricity, radius, diameter, center and self centered fuzzy graphs are studied. Some properties of eccentric nodes, peripheral nodes and central nodes are obtained.
Tom, Mini, Sunitha, Muraleedharan Shetty
openaire +2 more sources
Emerging role of ARHGAP29 in melanoma cell phenotype switching
This study gives first insights into the role of ARHGAP29 in malignant melanoma. ARHGAP29 was revealed to be connected to tumor cell plasticity, promoting a mesenchymal‐like, invasive phenotype and driving tumor progression. Further, it modulates cell spreading by influencing RhoA/ROCK signaling and affects SMAD2 activity. Rho GTPase‐activating protein
Beatrice Charlotte Tröster +3 more
wiley +1 more source
The distance Seidel matrix of connected graphs
For a connected graph G, we present the concept of a new graph matrix related to its distance and Seidel matrix, called distance Seidel matrix [Formula: see text]. Suppose that the eigenvalues of [Formula: see text] be [Formula: see text] In this article,
T. Haritha, A. V. Chithra
doaj +1 more source
The resistance distance is widely used in random walk, electronic engineering, and complex networks. One of the main topics in the study of the resistance distance is the computation problem.
Qun Liu, Jia-Bao Liu, Shaohui Wang
doaj +1 more source

