Results 21 to 30 of about 200 (157)
Distance magic labelings of hypercubes
Abstract A distance magic labeling of a graph G is a bijective assignment of labels from {1, 2, …, |V (G)|} to the vertices of G such that the sum of labels on neighbors of u is the same for all vertices u. We show that the n-dimensional hypercube has a distance magic labeling for every n ≡ 2 ( mod 4 ) . It is known that this condition is
Petr Gregor, Petr Kovář
openalex +3 more sources
Further results on distance magic labeling of graphs
openalex +2 more sources
Distance magic labelling of Mycielskian graphs [PDF]
Ravindra Kuber Pawar, T. C. N. SINGH
openalex +2 more sources
Distance magic-type and distance antimagic-type labelings of graphs
Bryan Freyberg
openalex +3 more sources
On distance labelings of 2-regular graphs
Let G be a graph with |V(G)| vertices and ψ : V(G) → {1, 2, 3, ... , |V(G)|} be a bijective function. The weight of a vertex v ∈ V(G) under ψ is wψ(v) = ∑u ∈ N(v)ψ(u). The function ψ is called a distance magic labeling of G, if wψ(v) is a constant for
Anak Agung Gede Ngurah+1 more
doaj +1 more source
Orientable -distance magic regular graphs
Hefetz, Mütze, and Schwartz conjectured that every connected undirected graph admits an antimagic orientation (Hefetz et al., 2010). In this paper we support the analogous question for distance magic labeling. Let be an Abelian group of order .
Paweł Dyrlaga, Karolina Szopa
doaj +1 more source
A graph G = ( V , E ) , where | V | = n and | E | = m is said to be a distance magic graph if there exists a bijection from the vertex set V to the set { 1 , 2 , … , n } such that, ∑ v ∈ N ( u ) f ( v ) = k , for all u ∈ V , which is a constant and ...
Aloysius Godinho, T. Singh
doaj +2 more sources
On D-distance (anti)magic labelings of shadow graph of some graphs
Anak Agung Gede Ngurah+2 more
openalex +2 more sources
A note on incomplete regular tournaments with handicap two of order n≡8(mod 16) [PDF]
A \(d\)-handicap distance antimagic labeling of a graph \(G=(V,E)\) with \(n\) vertices is a bijection \(f:V\to \{1,2,\ldots ,n\}\) with the property that \(f(x_i)=i\) and the sequence of weights \(w(x_1),w(x_2),\ldots,w(x_n)\) (where \(w(x_i)=\sum_{x_i
Dalibor Froncek
doaj +1 more source
D-magic strongly regular graphs
For a set of distances D, a graph G on n vertices is said to be D-magic if there exists a bijection and a constant k such that for any vertex x, where is the D-neighbourhood set of x.
Rinovia Simanjuntak, Palton Anuwiksa
doaj +1 more source