Results 31 to 40 of about 200 (157)
Distance antimagic labelings of Cartesian product of graphs
Let be a graph of order n. Let be a bijection. The weight w(v) of a vertex v with respect to the labeling f is defined by where N(v) is the open neighborhood of v. The labeling f is called a distance antimagic labeling if for any two distinct vertices v1,
Nancy Jaseintha Cutinho+2 more
doaj +1 more source
Handicap Labelings of 4-Regular Graphs
Let G be a simple graph, let f : V(G)→{1,2,...,|V(G)|} be a bijective mapping. The weight of v ∈ V(G) is the sum of labels of all vertices adjacent to v. We say that f is a distance magic labeling of G if the weight of every vertex is the same
Petr Kovar+3 more
doaj +1 more source
The Distance Magic Index of a Graph
Let G be a graph of order n and let S be a set of positive integers with |S| = n. Then G is said to be S-magic if there exists a bijection ϕ : V (G) → S satisfying ∑x∈N(u)ϕ(x) = k (a constant) for every u ∈ V (G). Let α(S) = max{s : s ∈ S}.
Godinho Aloysius+2 more
doaj +1 more source
Distance antimagic labeling of join and corona of two graphs
Let be a graph of order . Let be a bijection. The weight of a vertex with respect to is defined by , where is the open neighborhood of . The labeling is said to be distance antimagic if for every pair of distinct vertices .
A.K. Handa+3 more
doaj +1 more source
Union of Distance Magic Graphs
A distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ℓ from V to the set {1, . . . , n} such that the weight w(x) = ∑y∈NG(x) ℓ(y) of every vertex x ∈ V is equal to the same element μ, called the magic constant.
Cichacz Sylwia, Nikodem Mateusz
doaj +1 more source
Distance Magic Cartesian Products of Graphs
A distance magic labeling of a graph G = (V,E) with |V | = n is a bijection ℓ : V → {1, . . . , n} such that the weight of every vertex v, computed as the sum of the labels on the vertices in the open neighborhood of v, is a constant.
Cichacz Sylwia+3 more
doaj +1 more source
Orientable ℤN-Distance Magic Graphs
Let G = (V, E) be a graph of order n. A distance magic labeling of G is a bijection ℓ: V → {1, 2, . . ., n} for which there exists a positive integer k such that ∑x∈N(v)ℓ(x) = k for all v ∈ V, where N(v) is the open neighborhood of v.
Cichacz Sylwia+2 more
doaj +1 more source
Constant Sum Partition of Sets of Integers and Distance Magic Graphs
Let A = {1, 2, . . . , tm+tn}. We shall say that A has the (m, n, t)-balanced constant-sum-partition property ((m, n, t)-BCSP-property) if there exists a partition of A into 2t pairwise disjoint subsets A1, A2, . . . , At, B1, B2, . . .
Cichacz Sylwia, Gőrlich Agnieszka
doaj +1 more source
Understanding Functional Materials at School
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley +1 more source
This review explores how in situ and operando spectroscopic techniques reveal the real‐time behavior of reticular materials, including MOFs and COFs. These methods track material formation and functionalization, structural changes, defect formation, dynamic responses to external triggers, and catalytic processes.
Bettina Baumgartner+4 more
wiley +1 more source