Results 171 to 180 of about 8,537,021 (379)
A novel descriptor and a bottom‐up design principle are established to enable the rational design of hydrogen storage materials based on d‐block transition metal single‐atom COFs. By modulating H₂ adsorption through d‐orbital tuning, this approach achieves both high storage capacity and fast kinetics, while revealing a volcano‐type relationship between
Qiuyan Yue+24 more
wiley +1 more source
The Hierarchical Structure of Sheep Wool and Its Impact on Physical Properties
Sheep wool, a prevalent α‐keratinous fiber, is an essential model for studying protein‐based fibers. Its genetic diversity across breeds enables the establishment of multiscale structure‐property relationships, uncovering previously elusive insights into wool's hierarchical structure.
Serafina R. France Tribe+9 more
wiley +1 more source
Persistent secondary phases govern the performance of many thermoelectric materials, particularly of high performance MgAgSb. In this study advanced microstructural characterization for unequivocal phase identification combined with transport modeling and statistical analysis enabled the quantification of each phase's impact, revealing the most ...
Amandine Duparchy+3 more
wiley +1 more source
Mathematical estimation of stress distribution in normal and dysplastic human hips [PDF]
Blaž Mavčič+5 more
openalex +1 more source
This work describes a novel approach to obtain composite submicrometric structures of nickel hexacyanoferrate integrating trigonal selenium with the aim of enhancing the catalytic efficiency in oxygen evolution reaction (OER). Interestingly, the nanostructures undergo a cube‐to‐sphere transition that optimizes surface properties, leading to superior ...
Edlind Lushaj+10 more
wiley +1 more source
Mathematic modeling the oxygen distribution mechanism in Si ingots during growing processes [PDF]
A. P. Oksanich
openalex +1 more source