Results 111 to 120 of about 113,019 (248)

ACSL5 Regulates Glucose Metabolism and Chemotherapy Sensitivity in Colorectal Cancer Cells under Glutamine Deficiency

open access: yesAdvanced Science, EarlyView.
Glutamine deprivation triggers ACSL5 upregulation in tumor cells, sustaining their viability via dual metabolic rewiring programs. ACSL5 enhances glycolysis by relieving p53's inhibition of PGAM1 while also sustaining mitochondrial respiration and TCA cycle flux through promoting IDH2 dimerization.
Shuai Tian   +11 more
wiley   +1 more source

An Automated Organotypic SCN Culture System Revealing Novel Insights into VIP Regulation of Circadian Rhythm

open access: yesAdvanced Science, EarlyView.
An Automated ex vivo culture system BaSIC, tailored for SCN slices and cell culture, which automates medium exchange and ensures a stable internal environment is developed. BaSIC enables real‐time observation of tissue/cell responses to diverse but programmed stimuli.
Kui Han   +7 more
wiley   +1 more source

LMO7 Suppresses Tumor‐Associated Macrophage Phagocytosis of Tumor Cells Through Degradation of LRP1

open access: yesAdvanced Science, EarlyView.
LMO7 in tumor‐associated macrophages suppresses phagocytosis of tumor cells and limits cytotoxic T lymphocytes infiltration, fostering tumor progression. Mechanistically, LMO7 mediates the ubiquitination and degradation of the phagocytic receptor LRP1, impairing its ability to engulf tumor cells and driving macrophages toward an antitumor phenotype ...
Mengkai Li   +12 more
wiley   +1 more source

XIAP Stabilizes DDRGK1 to Promote ER‐Phagy and Protects Against Noise‐Induced Hearing Loss

open access: yesAdvanced Science, EarlyView.
Mechanism of GAS‐mediated protection against noise‐induced hearing loss (NIHL). Noise exposure activates the ATF4/eIF2α axis, downregulating XIAP and promoting DDRGK1 degradation, thereby inhibiting ER‐phagy and leading to hair cell (HC) death. GAS treatment rescues XIAP and DDRGK1 expression, reactivating ER‐phagy to mitigate HC loss, synaptic damage,
Lin Yan   +13 more
wiley   +1 more source

Development of Endogenous Protein Probes for Characterizing Surface Proteins and Cellular Interactors of Extracellular Vesicles

open access: yesAdvanced Science, EarlyView.
The proximity labeling enzyme APEX2 is displayed on extracellular vesicle (EV) surfaces via genetic fusion with EV‐sorting scaffolds, enabling in situ biotinylation of native surface proteins, adsorbed corona components, and interacting cellular proteins.
Wenyi Zheng   +5 more
wiley   +1 more source

Aberrant SUMOylation Restricts the Targetable Cancer Immunopeptidome

open access: yesAdvanced Science, EarlyView.
Pharmacological SUMOylation inhibition (SUMOi) counteracts tumor immune evasion by unmasking an immunogenic HLA‐I peptide and neoepitope repertoire. By restoring HLA‐I ligand availability through increased antigen processing and presentation, enhanced proteasomal cleavage, and modulated TAP1 peptide affinity, SUMOi boosts tumor immunogenicity ...
Uta M. Demel   +19 more
wiley   +1 more source

Promoting Autophagy Mitigates Stress‐Induced Remodeling in Patient iPSC‐CMs with the Phospholamban R9C Mutation

open access: yesAdvanced Science, EarlyView.
The Phospholamban (PLN) R9C mutation reduces SERCA2a binding, increasing calcium recycling and baseline contractility. However, the excess of free PLN promotes pentamer formation, limiting phosphorylation and blunting β‐adrenergic signaling. Under cardiac stress, enhanced functional demands overwhelm proteostasis in PLN R9C cells, leading to misfolded ...
Qi Yu   +10 more
wiley   +1 more source

Domestication of Tartary Buckwheat Shaped a Regulatory Module for Seedling Salt Tolerance by Targeting the Magnesium Transporter Gene FtMGT2

open access: yesAdvanced Science, EarlyView.
Domestication of Tartary buckwheat is selected for a salt tolerance mechanism involving the magnesium transporter FtMGT2. Its expression is controlled by the FtAGL16‐FtMYB15L module, which is stabilized under salt stress through a competitive interaction that blocks its degradation by the E3 ligase FtBRG1, ultimately boosting Na⁺ efflux and plant ...
Xiang Lu   +23 more
wiley   +1 more source

Precision Editing of NLRS Improves Effector Recognition for Enhanced Disease Resistance

open access: yesAdvanced Science, EarlyView.
Precision engineering of plant NLR immune receptors enables rational design of enhanced pathogen resistance through mismatched pairing, domain swapping, and targeted mutagenesis. These approaches achieve multi‐fold expansion in recognition breadth while minimizing autoimmunity risks and fitness penalties.
Vinit Kumar   +7 more
wiley   +1 more source

Additional file 1 of A role for the ATP-dependent DNA ligase lig E of Neisseria gonorrhoeae in biofilm formation

open access: yes
Supplementary Material ...
Pan, Jolyn   +4 more
openaire   +1 more source

Home - About - Disclaimer - Privacy