Results 151 to 160 of about 2,766,615 (303)

Cinnamic‐Hydroxamic‐Acid Derivatives Exhibit Antibiotic, Anti‐Biofilm, and Supercoiling Relaxation Properties by Targeting Bacterial Nucleoid‐Associated Protein HU

open access: yesAdvanced Science, EarlyView.
Cinnamic‐hydroxamic‐acid derivatives (CHADs) are identified as novel inhibitors of the bacterial nucleoid‐associated protein HU, exhibiting potent antibacterial, anti‐biofilm (both inhibition and eradication), and DNA relaxation (anti‐supercoiling) activities. Moreover, CHADs demonstrate strong synergistic effects with multiple antibiotics.
Huan Chen   +22 more
wiley   +1 more source

Comprehensive Profiling of N6‐methyladnosine (m6A) Readouts Reveals Novel m6A Readers That Regulate Human Embryonic Stem Cell Differentiation

open access: yesAdvanced Science, EarlyView.
This research deciphers the m6A transcriptome by profiling its sites and functional readout effects: from mRNA stability, translation to alternative splicing, across five different cell types. Machine learning model identifies novel m6A‐binding proteins DDX6 and FXR2 and novel m6A reader proteins FUBP3 and L1TD1.
Zhou Huang   +11 more
wiley   +1 more source

H2A.Z-nucleosomes are stabilized by the superhelicity-dependent DNA binding of the C-terminal tail of the histone variant

open access: yesNucleus
Using an in situ nucleosome stability assay based on salt extraction, we identified distinct stability features of H2A.Z-containing nucleosomes linked to alternative interactions of the histone variant’s C-terminal tail (Imre et al., Nat. Commun., 2024).
Ibtissem Benhamza   +8 more
doaj   +1 more source

Alkyltriphenylphosphonium Binding to Cardiolipin Triggers Oncosis in Cancer Cells

open access: yesAdvanced Science, EarlyView.
Alkyltriphenylphosphonium, exemplified by TPP+‐C14, preferentially accumulates in mitochondria and selectively binds to cardiolipin, a key phospholipid of the inner mitochondrial membrane, causing loss of mitochondrial membrane potential, severe cellular ATP depletion, and calcium imbalance.
Jin Li   +8 more
wiley   +1 more source

Precise Regulation of Membrane Proteins: From Physical Technology to Biomolecular Strategy

open access: yesAdvanced Science, EarlyView.
This review summarizes the emerging strategies for the precise regulation of membrane proteins using physical stimuli and biomolecule‐based tools. These methods provide new insights into cell regulation and offer promising directions for future disease treatment.
Xiu Zhao   +6 more
wiley   +1 more source

Mutational synergy during leukemia induction remodels chromatin accessibility, histone modifications and three-dimensional DNA topology to alter gene expression. [PDF]

open access: yesNat Genet, 2021
Yun H   +21 more
europepmc   +1 more source

Precision Editing of NLRS Improves Effector Recognition for Enhanced Disease Resistance

open access: yesAdvanced Science, EarlyView.
Precision engineering of plant NLR immune receptors enables rational design of enhanced pathogen resistance through mismatched pairing, domain swapping, and targeted mutagenesis. These approaches achieve multi‐fold expansion in recognition breadth while minimizing autoimmunity risks and fitness penalties.
Vinit Kumar   +7 more
wiley   +1 more source

Mammalian Proteome Profiling Reveals Readers and Antireaders of Strand‐Symmetric and ‐Asymmetric 5‐Hydroxymethylcytosine‐Modifications in DNA

open access: yesAdvanced Science, EarlyView.
We investigate by proteomics studies how strand‐symmetric and ‐asymmetric cytosine 5‐modifications in DNA are selectively recognized by the nuclear proteome. Using promoter probes with defined modification patterns, we identify tissue‐specific reader proteinsincluding MYC, MAX, and RFX5that discriminate 5‐hydroxymethylcytosine symmetry and sequence ...
Lena Engelhard   +8 more
wiley   +1 more source

CLinNET: An Interpretable and Uncertainty‐Aware Deep Learning Framework for Multi‐Modal Clinical Genomics

open access: yesAdvanced Science, EarlyView.
Identifying disease‐causing genes in neurocognitive disorders remains challenging due to variants of uncertain significance. CLinNET employs dual‐branch neural networks integrating Reactome pathways and Gene Ontology terms to provide pathway‐level interpretability of genomic alterations.
Ivan Bakhshayeshi   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy