Results 161 to 170 of about 11,015,246 (337)

Identifying Myeloid‐Derived Suppressor Cells and Lipocalin‐2 as Therapeutic Targets for Intervertebral Disc Degeneration

open access: yesAdvanced Science, EarlyView.
Inflammatory dysregulation drives intervertebral disc degeneration via stage‐dependent immune cellular dynamics. Single‐cell transcriptomics and genetic risk mapping revealed a shift from LCN2high myeloid‐derived suppressor cells maintaining disc repair in early stages to IL1B+ macrophage‐dominated pathology in advanced disease.
Changmeng Zhang   +6 more
wiley   +1 more source

The Evolutionary Trajectory and Prognostic Value of GITR+ Tregs Reprogramed by Tumor‐Intrinsic PD‐1/c‐MET Signaling in Pancreatic Cancer

open access: yesAdvanced Science, EarlyView.
In pancreatic ductal adenocarcinoma (PDAC), tumor‐intrinsic PD‐1 signaling activates the MET pathway, leading to the establishment of an immunosuppressive tumor microenvironment (TME). This MET‐driven signaling cascade promotes the selective accumulation of GITR+ regulatory T cells (Tregs), a highly immunosuppressive subset.
Jiande Han   +16 more
wiley   +1 more source

A peer-to-peer file search and download protocol for wireless ad-hoc networks [PDF]

open access: green, 2008
Hasan Sözer   +2 more
openalex   +1 more source

Gut Metabolite Indole‐3‐Propionic Acid Regulates Macrophage Autophagy Through PPT1 Inhibiting Aging‐Related Myocardial Fibrosis

open access: yesAdvanced Science, EarlyView.
IPA is an intestinal tryptophan metabolite whose effects decline with decreased heart function. Supplementing IPA can alleviate the aging‐related myocardial fibrosis through PPT1. PPT1 is a key protein localized to lysosomes, and IPA can restore macrophage autophagy function by regulating PPT1 expresssions, thereby reducing aging‐related myocardial ...
Jing Lu   +16 more
wiley   +1 more source

BASys2: a next-generation bacterial genome annotation system. [PDF]

open access: yesNucleic Acids Res
Poelzer J   +7 more
europepmc   +1 more source

Osteoblast‐CD4+ CTL Crosstalk Mediated by SIRT1/DAAM2 Axis Prevents Age‐Related Bone Loss

open access: yesAdvanced Science, EarlyView.
In the osteoblastic niche, SIRT1 activates and recruits CD4+ CTLs by increasing DAAM2 expression via EZH2 deacetylation and boosting the secretion of key chemokines, such as CCL3, CCL5, and CXCL10. Then, CD4+ CTL directly eliminates senescent osteoblasts in an MHC‐II‐dependent way, thereby slowing down the process of bone ageing and effectively ...
Bin Yang   +20 more
wiley   +1 more source

Home - About - Disclaimer - Privacy