Results 151 to 160 of about 918,571 (309)

Embedded 3D‐Coaxial Bioprinting of Stenotic Brain Vessels with a Mechanically Enhanced Extracellular Matrix Bioink for Investigating Hemodynamic Force‐Induced Endothelial Responses

open access: yesAdvanced Functional Materials, EarlyView.
In this study, a physically enhanced vascular dECM bioink and used 3D‐coaxial bioprinting are developed to fabricate mature brain blood vessels for cerebral atherosclerosis research. This model demonstrates that vascular geometry‐induced hemodynamic changes trigger vascular inflammation, ensuring its potential for cerebrovascular research.
Wonbin Park   +7 more
wiley   +1 more source

Synthetic Strategy for mRNA Encapsulation and Gene Delivery with Nanoscale Metal‐Organic Frameworks

open access: yesAdvanced Functional Materials, EarlyView.
This research utilizes the ZIF‐8 for the encapsulation and intracellular delivery of nucleic acids, specifically mRNA, for applications in gene delivery. Integrating PEI addresses the issue of mRNA leakage from ZIF‐8, resulting in the delivery and expression of green fluorescent protein (GFP) in vitro and firefly luciferase in vivo.
Harrison Douglas Lawson   +12 more
wiley   +1 more source

Perfusable Brain Microvascular Network‐On‐Chip Model to Study Flavivirus NS1‐Induced Endothelial Dysfunction

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a microfluidic brain microvascular network‐on‐chip (BMVasChip) to investigate endothelial barrier dysfunction caused by flavivirus non‐structural protein 1 (NS1), including virus‐ and time‐dependent vascular damage, leakiness, and dysfunction.
Monika Rajput   +5 more
wiley   +1 more source

Transducer Materials Mediated Deep Brain Stimulation in Neurological Disorders

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses advanced transducer materials for improving deep brain stimulation (DBS) in neurological disorders. These materials respond to light, ultrasound, or magnetic fields, enabling precise, less invasive neuromodulation. Their stimulus‐responsive properties enhance neural control and adaptive therapy, paving the way for next‐generation ...
Di Zhao   +5 more
wiley   +1 more source

Anionic Citrate‐Based 3D‐Printed Scaffolds for Tunable and Sustained Orthobiologic Delivery to Enhance Tissue Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
A potent anionic citric acid‐based 3D‐printed scaffold is developed for the sustained and controlled release of orthobiologics to enhance orthopedic therapeutic efficacy. Comprehensive in vivo studies demonstrated effective bone fusion and high safety at a low dose of BMP‐2 delivered by the system, establishing it as a promising platform for safe ...
Se‐Hwan Lee   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy