Results 221 to 230 of about 311,418 (261)

Gallium‐Doped MXene Nanozymes Protect Liver Through Multi‐Death Pathway Blockade and Hepatocyte Regeneration

open access: yesAdvanced Science, EarlyView.
This study develops gallium‐doped V2C MXene nanozymes (Ga‐V2C) to treat acetaminophen‐induced liver injury through multi‐death pathway blockade and hepatocyte regeneration. Unlike conventional single‐target therapies like N‐acetylcysteine, Ga‐V2C nanozymes enable oxidative stress suppression, apoptosis, and ferroptosis inhibition, and enhanced ...
Xiaopeng Cai   +13 more
wiley   +1 more source

Therapeutic Reprogramming of Glioblastoma Phenotypic States Using Multifunctional Heparin Nanoparticles

open access: yesAdvanced Science, EarlyView.
This study presents heparin‐derived nanoparticles (HP‐NPs) as a novel precision medicine platform that combines therapeutic and delivery functions. HP‐NPs target drug‐resistant glioblastoma stem cells, reprogramming them into a drug‐sensitive phenotype and significantly reducing tumor progression.
Vadim Le Joncour   +14 more
wiley   +1 more source

Wedelolactone, a Novel TLR2 Agonist, Promotes Neutrophil Differentiation and Ameliorates Neutropenia: A Multi‐Omics Approach to Unravel the Mechanism

open access: yesAdvanced Science, EarlyView.
Wedelolactone (WED), a natural TLR2 agonist, promotes neutrophil differentiation and enhances bactericidal function, offering a potential therapeutic strategy for neutropenia. Using a multi‐omics approach, this study reveals that WED activates the TLR2/MEK/ERK pathway, upregulating key transcription factors (PU.1, CEBPβ) to drive neutrophil development.
Long Wang   +16 more
wiley   +1 more source

A Novel FGFR3‐Targeting Antibody‐Drug Conjugate Induces Tumor Cell Apoptosis through the cGAS–STING Pathway in Bladder Cancer

open access: yesAdvanced Science, EarlyView.
LZU‐WZLYCS01 is a novel FGFR3‐targeting ADC for bladder cancer with 7‐ethyl‐9‐fluorocamptothecin (A2) as its cytotoxic payload. LZU‐WZLYCS01 intracellularly releases A2, which targets MAD2L1 to activate the cGAS‐STING pathway and induce tumor cell apoptosis.
Shu Cui   +16 more
wiley   +1 more source

Engineering Dimensional Configuration of Single‐Atom S‐Cu‐S Sites as Reversible Electron Station for Enhanced Peroxidase‐Mimicking

open access: yesAdvanced Science, EarlyView.
L‐cysteine triggers auto‐assembly of POD‐like 3D biomimetic S‐Cu‐S single‐atom nanozymes on MoS2 (MoCC). MoCC shows 16.3‐fold higher catalytic velocity and 17.9‐fold greater affinity than HRP, enabling efficient •OH generation via enhanced electron inversion and transfer.
Wenjie Ma   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy