Results 231 to 240 of about 311,418 (261)

Targeting Itga8 Mitigates Neurogenic Bladder Fibrosis Driven by Trem2⁺ Macrophage‐Derived Fn1 via FAK/RhoA/ROCK Signaling

open access: yesAdvanced Science, EarlyView.
Normal bladders exhibit quiescent fibroblasts/macrophages, whereas neurogenic bladders show acute‐phase Itga8⁺ fibroblast expansion driven by Trem2⁺ macrophage‐secreted Fn1, which activates FAK/RhoA/ROCK signaling, promotes cytoskeletal remodeling, and upregulates pro‐fibrotic genes.
Jiaxin Wang   +9 more
wiley   +1 more source

Type I Interferon Pathway Activation Disrupts Monocyte Maturation and Enhances Immune Evasion in Multiple Myeloma

open access: yesAdvanced Science, EarlyView.
This study shows that monocytes in multiple myeloma display an excessive interferon response, leading to transcriptional reprogramming and altered differentiation. Using single‐cell sequencing, coculture experiments, and patient samples before and after therapy, the authors demonstrate that induction treatment reduces this interferon response ...
Jian Cui   +18 more
wiley   +1 more source

Nasal Mucosa‐Derived Extracellular Vesicles as a Systemic Antiaging Intervention

open access: yesAdvanced Science, EarlyView.
This study shows that nasal mucosa‐derived extracellular vesicles (nmEVs) exert systemic anti‐ageing effects in mice by restoring circadian rhythm, suppressing cellular senescence, and improving cognitive function. In aged human bone marrow mesenchymal stem cells, nmEVs reverse senescence‐associated phenotypes and reactivate core clock gene expression.
Wentao Shi   +14 more
wiley   +1 more source

Data Mining of Adverse Reactions to Iodinated Contrast Media Based on a Municipal Spontaneous Reporting System in China. [PDF]

open access: yesCurr Med Sci
Zhang WT   +10 more
europepmc   +1 more source

Chronic ER Stress Triggers Cell‐Surface Chaperones as the Therapeutic Targets of CAR Cells in Acute Myeloid Leukemia

open access: yesAdvanced Science, EarlyView.
Acute myeloid leukemia (AML) remains a therapeutic challenge due to its heterogeneity and limited targets. Here, multi‐omics analyses are utilized, and it is revealed that AML cells, particularly the FLT3‐ITD+ subtype, undergo chaperone‐mediated ER stress, inducing surface translocation of ER chaperones.
Yimin Zhou   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy