Results 181 to 190 of about 120,380 (317)
Engineered exosome‐based heavy atom‐free nanosensitizers are developed for safe and targeted sono‐photodynamic therapy of solid tumors. The IR820‐TPE‐loaded, biotin‐conjugated exosomes (IR820‐TPE@B‐Exo) demonstrate significant promise for NIR fluorescence imaging‐guided sono‐photodynamic cancer therapy.
Van‐Nghia Nguyen+16 more
wiley +1 more source
A mitochondria‐targeted cationic nanoscale metal organic framework shows strong radiotherapy‐radiodynamic therapy effects and selectively releases digitonin in acidic tumor microenvironments to induce disulfidptosis of cancer cells and downregulate immune checkpoints in cancer and T cells, thereby eliciting strong antitumor immunity to effectively ...
Wenyao Zhen+7 more
wiley +1 more source
This work explores the MOF landscape to select a single, optimal candidate for successfully delivering cancer drugs (gemcitabine, paclitaxel, SN‐38) into tough pancreatic tumors. Machine learning and simulations guide this search, demonstrating colloidal stability, excellent biocompatibility, cellular uptake, and sustained release.
Francesca Melle+9 more
wiley +1 more source
State‐of‐the‐Art, Insights, and Perspectives for MOFs‐Nanocomposites and MOF‐Derived (Nano)Materials
Different approaches to MOF‐NP composite formation, such as ship‐in‐a‐bottle, bottle‐around‐the‐ship and in situ one‐step synthesis, are used. Owing to synergistic effects, the advantageous features of the components of the composites are beneficially combined, and their individual drawbacks are mitigated.
Stefanos Mourdikoudis+6 more
wiley +1 more source
Engineering Magnetotactic Bacteria as Medical Microrobots
Magnetotactic bacteria (MTB) are living microorganisms that produce magnetosomes for navigation using the Earth's geomagnetic field. Their built‐in magnetic components, along with their intrinsic and/or modified biological functions, make them one of the most promising platforms for making future living and programmable microrobots.
Jiaqi Wang+9 more
wiley +1 more source
Machine‐Learning‐Aided Advanced Electrochemical Biosensors
Electrochemical biosensors are highly sensitive, portable, and versatile. Advanced nanomaterials enhance their performance, while machine learning (ML) improves data analysis, minimizes interference, and optimizes sensor design. Despite progress in both fields, their combined potential in diagnostics remains underexplored.
Andrei Bocan+9 more
wiley +1 more source
Synthetic lethality in cancer: a protocol for scoping review of gene interactions from synthetic lethal screens and functional studies. [PDF]
Chauhan R, Damerla RR, Dhyani VS.
europepmc +1 more source
Micro‐ and Nano‐Bots for Infection Control
This review presents a strategic vision for integrating micro‐ and nanobots in the pipeline for infection diagnosis, prevention, and treatment. To develop these robots as a practical solution for infection management, their design principles are clarified based on their propulsion mechanisms and then categorized infection management domains based on ...
Azin Rashidy Ahmady+5 more
wiley +1 more source
Target screening and optimization of candidate compounds for breast cancer treatment using bioinformatics and computational chemistry approaches. [PDF]
Xu J, Li X, Jia Y.
europepmc +1 more source
Carbon‐based piezoelectric materials are systematically categorized based on their structural and functional properties. The mechanisms of stress‐induced charge transfer are elucidated, and their applications are explored across three key domains: piezoelectric catalysis for energy conversion and environmental remediation, piezoelectric biomedical ...
Mude Zhu+3 more
wiley +1 more source