Results 281 to 290 of about 1,261,260 (337)

Preparation and Thermal Modification of Disentangled Ultrahigh‐Molecular‐Weight Polyethylene Particles for Powder‐Based Additive Manufacturing

open access: yesAdvanced Engineering Materials, EarlyView.
Ultrahigh‐molecular‐weight polyethylene powders (<≈40 μm) with a bulk density of 260 g L−1 are prepared from a silica supported bisimine pyridine iron catalyst. The nascent product is disentangled and can be thermally densified without loss of its low viscosity.
Adrian Vaghar   +4 more
wiley   +1 more source

Performance Comparison of Surface Sensitizers for Diode Laser Powder Bed Fusion of Polyamide 12

open access: yesAdvanced Engineering Materials, EarlyView.
Laser‐generated nanoparticles transform standard PA12 powders into high‐performance, dye‐free feedstocks for diode laser 3D printing. Despite identical absorbance at 808 nm, CuS, LaB6, and CB coatings reveal striking differences in fusion and strength—unlocking new design space for recyclable, industrial‐grade polymers.
Michael Willeke   +9 more
wiley   +1 more source

Mesoporous Silica Microspheres by Super‐Fast Alkaline Etching of Micrometer‐Sized Stöber Particles

open access: yesAdvanced Engineering Materials, EarlyView.
Microscale silica particles are prepared along with a modified, scalable Stöber synthesis using the continuous addition of tetraethoxy silane to an ethanolic solution of ammonia with KCl. Etching with hydroxide ions at 95 °C gave porous analogs within minutes. Monodisperse particles are isolable in high yield after precipitation in ethanol.
Adrian Vaghar   +2 more
wiley   +1 more source

Key Trends and Insights in Smart Polymeric Skin Wearable Patches

open access: yesAdvanced Engineering Materials, EarlyView.
Intelligent polymers, which respond to various physical and biological stimuli, are explored for the development of skin wearable patches in biomedical applications. Smart polymers, also known as intelligent or stimuli‐responsive polymers, play a crucial role in the development of advanced wearable patches due to their versatility and softness.
Sergio J. Peñas‐Núñez   +2 more
wiley   +1 more source

3D Bioprinting of Thick Adipose Tissues with Integrated Vascular Hierarchies

open access: yesAdvanced Functional Materials, Volume 35, Issue 12, March 18, 2025.
An advanced 3D bioprinting technique is used here to create thick adipose tissues with a central, vessel and extensive branching. The construct is made using alginate, gelatin and collagen‐based bioinks. Flow through the complex vessel network is demonstrated as well as its successful integration with a femoral artery following implantation in a rat ...
Idit Goldfracht   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy