Results 181 to 190 of about 135,127 (291)

Toughening β‐Ga2O3 via Mechanically Seeded Dislocations

open access: yesAdvanced Functional Materials, EarlyView.
β‐Ga2O3 is promising for next‐generation semiconductors but its brittleness limits flexible and high‐precision applications. Here, mechanically seeded dislocations introduced by surface deformation improved damage tolerance in (001) β‐Ga2O3. Nanoindentation and characterization show dislocations suppress cleavage cracks by enabling stable plastic ...
Zanlin Cheng   +5 more
wiley   +1 more source

Overcoming the Stability Issue for Hydrophobic Hole Transporting Layers Utilized in Tin‐Lead Perovskite and Tandem Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
A non‐annealed process is developed for non‐PEDOT:PSS inverted tin‐lead perovskite solar cells to attain PCE 22.67% for the PTAA‐based device. When PTAA is applied in an all‐perovskite tandem solar cell, a record efficiency of 28.14% is obtained with great stability for the efficiency maintaining 96% of its original value for 500 h under one‐sun ...
Chun‐Hsiao Kuan   +12 more
wiley   +1 more source

Astrocyte‐Guided Maturation of Neural Constructs in a Modular Biosynthetic Hydrogel for Biohybrid Neurotechnologies

open access: yesAdvanced Functional Materials, EarlyView.
A modular biosynthetic PVA–gelatin hydrogel crosslinked via visible‐light thiol‐ene chemistry is engineered as a coating for neural electrodes. Optimizing matrix composition and mechanical properties enables the hydrogel to support astrocytic populations that guide neural differentiation and functional maturation.
Martina Genta   +4 more
wiley   +1 more source

Biomimetic Ion‐Orchestrated Hierarchical Armored Hydrogel Coating for Robust and Multifunctional Surface Protection

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by the skin‐toughening mechanism of marine sponges, an ion‐orchestrated structural engineering strategy is proposed to regulate the surface microstructure of hydrogel coatings, enabling the in situ formation of a robust armor layer that enhances mechanical integrity and provides multifunctional protection by suppressing fouling attachment and ...
Wenshuai Yang   +11 more
wiley   +1 more source

Liquid Crystalline Inverted Lipid Phases and Reverse Micelles in Drug Delivery: From Molecular Design to Therapeutic Potential

open access: yesAdvanced Functional Materials, EarlyView.
Liquid crystalline inverted lipid phases and reverse micelles are self‐assembled lipid nanostructures that enhance the solubility, stability, and delivery of diverse therapeutics. This review integrates their physicochemical principles, formulation strategies, drug loading mechanisms, and biomedical applications, highlighting their growing ...
Numan Eczacioglu   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy