Results 121 to 130 of about 786,773 (300)
Atomic Size Misfit for Electrocatalytic Small Molecule Activation
This review explores the application and mechanisms of atomic size misfit in catalysis for small molecule activation, focusing on how structural defects and electronic properties can effectively lower the energy barriers of chemical bonds in molecules like H2O, CO2, and N2.
Ping Hong +3 more
wiley +1 more source
Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro +4 more
wiley +1 more source
A Thermodynamic Contact Problem for Elastic-Viscoplastic Materials
Mathematical modeling of stress generation and heat transfer in casting processes is a difficult and complex subject that is now receiving increased attention.
Constantin BENDREA, Viorel MUNTEANU
doaj
Elastic Properties of C-Type Lanthanide Sesquioxides
In this study, we have presented the solid-state theory of plasma oscillations to investigate the anisotropic elastic properties such as three independent static elastic stiffness constants (Cij: C11, C12 & C44) of C-type Ln2O3 lanthanide solids.
Pooja Yadav +4 more
doaj +1 more source
Failure of classical elasticity in auxetic foams
A recent derivation [P.H. Mott and C.M. Roland, Phys. Rev. B 80, 132104 (2009).] of the bounds on Poisson's ratio, v, for linearly elastic materials showed that the conventional lower limit, -1, is wrong, and that v cannot be less than 0.2 for classical ...
Giller, C. B. +3 more
core
Laser‐Induced Graphene from Waste Almond Shells
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova +9 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Substrate Stress Relaxation Regulates Cell‐Mediated Assembly of Extracellular Matrix
Silicone‐based viscoelastic substrates with tunable stress relaxation reveal how matrix mechanics regulates cellular mechanosensing and cell‐mediated matrix remodelling in the stiff regime. High stress relaxation promotes assembly of fibronectin fibril‐like structures, increased nuclear localization of YAP and formation of β1 integrin‐enriched ...
Jonah L. Voigt +2 more
wiley +1 more source
Biomimetic Iridescent Skin: Robust Prototissues Spontaneously Assembled from Photonic Protocells
Uniform nanoparticles are induced to form arrays (photonic crystals) in the cores of biopolymer capsules, endowing these ‘protocells’ with structural color. These protocells are then assembled into large self‐standing objects, i.e., prototissues, with robust mechanical properties as well as iridescent optical properties.
Medha Rath +6 more
wiley +1 more source
This study examines how pore shape and manufacturing‐induced deviations affect the mechanical properties of 3D‐printed lattice materials with constant porosity. Combining µ‐CT analysis, FEM, and compression testing, the authors show that structural imperfections reduce stiffness and strength, while bulk material inhomogeneities probably enhance ...
Oliver Walker +5 more
wiley +1 more source

