Results 231 to 240 of about 10,356,928 (290)
Glioblastoma multiforme is the most devastating and incurable brain tumor. To better study this disease, a 3D model is developed using a hyaluronic acid‐based hydrogel combined with a multicellular approach. This model recapitulates in vivo brain stiffness, cell‐extracellular matrix and cell‐cell interactions and the tumor's hijacking function with the
Mateo S. Andrade Mier+26 more
wiley +1 more source
Mesenchymal stem cell‐derived nanoghosts (MSC‐NGs) mimic naturally secreted extracellular vesicles (MSC‐EVs) in structure and physicochemical properties but can be synthesized at more translatable yields. As osteogenic agents, MSC‐NGs demonstrate superior outcomes compared to MSC‐EVs.
Antoine Karoichan+4 more
wiley +1 more source
Chiral Engineered Biomaterials: New Frontiers in Cellular Fate Regulation for Regenerative Medicine
Chiral engineered biomaterials can selectively influence cell behaviors in regenerative medicine. This review covers chiral engineered biomaterials in terms of their fabrication methods, cellular response mechanisms, and applications in directing stem cell differentiation and tissue function.
Yuwen Wang+5 more
wiley +1 more source
Surface‐attached multilayer micromagnet systems are fabricated by two‐photon crosslinking. The pillar‐shaped micro actuators consist of a soft and flexible surface‐attached cell‐repellent hydrogel layer at the bottom, acting as a hinge and a cell‐adhesive hydrophobic polymer filled with magnetic nanoparticles.
Nicolas Geid+5 more
wiley +1 more source
Selective soldering via molten metal printing enables component integration, even in heat‐sensitive applications across fields like additive manufacturing, sustainable electronics, and smart textiles. This method overcomes the temperature limitations of existing technologies.
Dániel Straubinger+4 more
wiley +1 more source
This review covers the recent advances in the synthesis and properties of stable radical polymers (SRPs) and presents their applications in electronics, magnetics, optoelectronics, and biomedicines. The review concludes with a discussion of the challenges in radical chemistry and functionalization, while shedding light on the groundbreaking potential ...
Yufeng Xiong+11 more
wiley +1 more source
Print‐and‐Plate Architected Electrodes for Electrochemical Transformations Under Flow
Typical flow cell electrodes are composed of stochastic porous carbon, limiting understanding of electrode structure‐performance relationships. This work describes an approach, termed “print‐and‐plate,” to prepare porous electrodes by direct ink writing followed by conformal metal coating.
Dylan M. Barber+12 more
wiley +1 more source