Results 101 to 110 of about 33,233 (210)

Ice Lithography: Recent Progress Opens a New Frontier of Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
This review focuses on recent advancements in ice lithography, including breakthroughs in compatible precursors and substrates, processes and applications, hardware, and digital methods. Moreover, it offers a roadmap to uncover innovation opportunities for ice lithography in fields such as biological, nanoengineering and microsystems, biophysics and ...
Bingdong Chang   +9 more
wiley   +1 more source

pH‐Tunable Material Properties of Glycine‐Rich Condensates from Tick Bioadhesive

open access: yesAdvanced Functional Materials, EarlyView.
This work studies the influence of pH on the phase separation behavior of a disordered glycine‐rich protein found in tick bioadhesive. The results show profound impact on the propensity of coacervation, condensate microstructure and viscosity, amphiphilicity of the peptides, and effective encapsulation of therapeutic molecules.
Manali Nandy   +5 more
wiley   +1 more source

Tailoring the Properties of Functional Materials With N‐Oxides

open access: yesAdvanced Functional Materials, EarlyView.
The properties of materials bearing N‐oxide groups are often dominated by the polar N+─O− bond. It provides hydrophilicity, selective ion‐binding, electric conductivity, or antifouling properties. Many of the underlying mechanisms have only recently been discovered, and the interest in N‐oxide materials is rapidly growing.
Timo Friedrich   +5 more
wiley   +1 more source

A Smart Bio‐Battery Facilitates Diabetic Bone Defect Repair Via Inducing Macrophage Reprogramming and Synergistically Modulating Bone Remodeling Coupling

open access: yesAdvanced Functional Materials, EarlyView.
This research presents a novel implantable bio‐battery, GF‐OsG, tailored for diabetic bone repair. GF‐OsG generates microcurrents in high‐glucose conditions to enhance vascularization, shift macrophages to the M2 phenotype, and regulate immune responses.
Nanning Lv   +10 more
wiley   +1 more source

Stabilizing Cationic Palladium Single‐Atom Sites on Heteroatom‐Doped Carbon for Selective Hydrogen Peroxide Electrosynthesis

open access: yesAdvanced Functional Materials, EarlyView.
In this research, it is demonstrated that dual nitrogen and sulfur doping in hollow carbon spheres creates a tunable coordination environment that stabilizes cationic Pd single atoms as robust organometallic complexes, enabling high selectivity and stability for electrochemical hydrogen peroxide production under harsh acidic and peroxide‐rich ...
Guilherme V. Fortunato   +16 more
wiley   +1 more source

Two‐Dimensional Materials as a Multiproperty Sensing Platform

open access: yesAdvanced Functional Materials, EarlyView.
Various sensing modalities enabled and/or enhanced by two‐dimensional (2D) materials are reviewed. The domains considered for sensing include: 1) optoelectronics, 2) quantum defects, 3) scanning probe microscopy, 4) nanomechanics, and 5) bio‐ and chemosensing.
Dipankar Jana   +11 more
wiley   +1 more source

Unprecedented Spin‐Lifetime of Itinerant Electrons in Natural Graphite Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Graphite exhibits extraordinary spintronic potential, with electron spin lifetimes reaching 1,000 ns at room temperature ‐ over 100 times longer than graphene‐based devices. Magnetic resonance spectroscopy reveals strong anisotropy: out‐of‐plane spins live 50 times longer than their in‐plane counterparts.
Bence G. Márkus   +5 more
wiley   +1 more source

Dual‐Phased Molybdenum Carbides Confined in MOF‐Derived Carbon Nanoframes Enhance Capacitive Desalination

open access: yesAdvanced Functional Materials, EarlyView.
Dual‐phase MoC/Mo2C/CoNC nanoframes are synthesized via a MOF‐on‐MOF strategy, demonstrating a large salt adsorption capacity, a low energy consumption, and an excellent cycling stability. In situ/ex situ characterizations and DFT calculations reveal that the MoC/Mo2C dual phase transition facilitates Na+ adsorption/desorption, while interface‐induced ...
Feifei Pang   +8 more
wiley   +1 more source

Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere   +5 more
wiley   +1 more source

Programmable DNA‐Peptide Hybrid Nanostructures for Potent Neutralization of Multiple Influenza a Virus Subtypes

open access: yesAdvanced Functional Materials, EarlyView.
A multivalent antiviral platform based on honeycomb‐shaped DNA nanostructures (HC–Urumin) is developed to enhance the potency and breadth of the host defense peptide Urumin. Through spatially patterned trimeric presentation, HC–Urumin disrupts influenza A virus entry, improves cell viability, and reduces disease severity in vivo‐offering a modular and ...
Saurabh Umrao   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy