Results 131 to 140 of about 740,547 (334)

Entering the Strong Coupling Regime in Conventional Organic Solar Cells

open access: yesAdvanced Functional Materials, EarlyView.
Organic solar cells convert light into fossil‐free energy, yet they still cannot compete with their silicon counterparts. Strong exciton‐photon coupling can ameliorate some properties of organic solar cells, but it requires additional mirrors that diminish light absorbance. Here, mirror‐free strong exciton‐photon coupling is implemented in conventional
Nicola Peruffo   +4 more
wiley   +1 more source

Bright Monocompound Metal Halide Scintillator for Fast Neutron Radiography

open access: yesAdvanced Functional Materials, EarlyView.
Metal halide scintillator, tetraphenylphosphonium manganese bromide (TPP2MnBr4), provides a significant benefit for fast neutron imaging. A fourfold increase in efficiency over traditional zinc sulfide screens is achieved by efficiently utilizing neutron interactions within its homogeneous structure.
Aditya Bhardwaj   +13 more
wiley   +1 more source

Understanding Functional Materials at School

open access: yesAdvanced Functional Materials, EarlyView.
This review outlines strategies for effectively teaching nanoscience in schools, focusing on challenges such as scale comprehension and curriculum integration. Emphasizing inquiry‐based learning and chemistry core concepts, it showcases hands‐on activities, digital tools, and interdisciplinary approaches.
Johannes Claußnitzer, Jürgen Paul
wiley   +1 more source

The Geometrization of the Electromagnetic Field

open access: yesJournal of Applied Mathematics and Physics, 2016
Einstein used the term “unified field theory” in a title of a publication for the first time in 1925. Somewhat paradoxically, an adequate historical, physical and philosophical understanding of the dimension of Einstein’s unification program cannot be understood without fully acknowledging one of Einstein’s philosophical principles.
openaire   +3 more sources

Electrochemically Driven Tandem In‐Plane Reduction and FeCl3‐ Intercalation of Highly Crystalline Graphene Oxide Thin Films

open access: yesAdvanced Functional Materials, EarlyView.
This study presents a green processing route for high‐performance reduced graphene oxide (rGO) transparent conductive films (TCFs) using highly crystalline Brodie's GO. In‐plane electrochemical reduction forms rGO on insulating substrates without toxic reductants or heat. Subsequent FeCl₃ intercalation enhances conductivity, overcoming the transparency–
Tatsuki Tsugawa   +6 more
wiley   +1 more source

Colloidal Opaline Composites as Throughput‐Scalable, Fully Transparent, and Color‐Tunable Radiative Cooling Exterior Films for Outdoor Photovoltaics

open access: yesAdvanced Functional Materials, EarlyView.
Particular thermal metamaterials are widely used as daytime radiative coolers merely by embedding thermally emissive nanoparticles (NPs) in liquid resins to form scalable, yet highly efficient cooling films in a cost‐effective way. However, randomly dispersed NPs, prevalently used thus far, cause strong scattering, limiting NP content and cooling ...
YongDeok Cho   +10 more
wiley   +1 more source

Toward the 3rd Generation of Smart Farming: Materials, Devices, and Systems for E‐Plant Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review explores the latest developments in e‐plant technologies, which are revolutionizing smart farming by enabling real‐time monitoring of plant and environmental conditions. It covers the design, applications, and systems of e‐plant devices, detailing how they integrate data analytics to optimize agricultural practices, enhance crop yields, and
Daegun Kim   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy