Results 81 to 90 of about 257,868 (258)
This study explores the energy conversion in powder bed fusion of polymers using laser beam for polyamide 12 and polypropylene powders. It combines material and process data, using dimensionless parameters and numerical models, to enable the prediction of suitable printing parameters.
Christian Schlör+9 more
wiley +1 more source
ABSTRACTS of the papers presented to the Symposium on the Theory of Elementary Particles [PDF]
M. Nogami+19 more
openalex +1 more source
AN ELEMENTARY GUIDE TO THE ELEMENTARY PARTICLES [PDF]
Rosenfeld, A. H., Tripp, R. D.
openaire +2 more sources
A novel approach for alloy development in laser powder bed fusion is introduced. Instead of producing massive samples of one composition at a time, prepressed powder bed samples produced from powder mixtures are processed. Guidelines for the selection of precursor powders are developed.
Felix Großwendt+6 more
wiley +1 more source
A Note on the Fundamental Symmetry of Elementary Particles [PDF]
Takao Okabayashi
openalex +1 more source
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley +1 more source
On elementary heavy particles with any integral charge: Errata [PDF]
H. J. Bhabha
openalex +1 more source
Powder Metallurgy and Additive Manufacturing of High‐Nitrogen Alloyed FeCr(Si)N Stainless Steel
The alloying element Nitrogen enhances stainless steel strength, corrosion resistance, and stabilizes austenite. This study develops austenitic FeCr(Si)N steel production via powder metallurgy. Fe20Cr and Si3N4 are hot isostatically pressed, creating an austenitic microstructure.
Louis Becker+5 more
wiley +1 more source
The Theory of Interaction of Elementary Particles. II [PDF]
Osamu Hara
openalex +1 more source
Herein, silicon‐based nanoparticle coatings on X2CrNiMo17‐12‐2 metal powder are presented. The coating process scale, process parameters, nanoparticle size (65–200 nm) as well as the coating amount are discussed regarding powder properties. The surface roughness affects the flowability, while reflectance depends on the coating material and surface ...
Arne Lüddecke+4 more
wiley +1 more source