Results 291 to 300 of about 1,039,373 (358)

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Chain of Call: Learning How to Effectively Communicate with Emergency Medical Services at School. [PDF]

open access: yesChildren (Basel)
Martínez-Isasi S   +9 more
europepmc   +1 more source

Dual‐Functional Additive Regulating Zn2+ Solvation Structure and (002) Plane‐Oriented Deposition for Dendrite‐Free Zn Anodes

open access: yesAdvanced Functional Materials, EarlyView.
Sulfosalicylic acid (SSA) is introduced as a bifunctional additive for Aqueous zinc‐ion batteries. SSA reconstructs the solvation structure of Zn2+ through the synergistic effects of its multiple functional groups, suppressing side reactions while selectively promoting Zn (002) deposition to prevent dendrite formation.
Le Gao   +8 more
wiley   +1 more source

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Tuning the Electronic Structure and Spin State of Fe─N─C Catalysts Using an Axial Oxygen Ligand and Fe Clusters for High‐Efficiency Rechargeable Zinc–Air Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A FeN4─O/Clu@NC‐0.1Ac catalyst containing atomically‐dispersed FeN4─O sites (medium‐spin Fe2+) and Fe clusters delivered a half‐wave potential of 0.89 V for ORR and an overpotential of 330 mV at 10 mA cm−2 for OER in 0.1 m KOH. When the catalyst was used in a rechargeable Zn–air battery, a power density of 284.5 mW cm−2 was achieved with excellent ...
Yongfang Zhou   +8 more
wiley   +1 more source

Teaching mechanics at the elementary school level

open access: yesEnseñanza de las ciencias: revista de investigación y experiencias didácticas, 1985
openaire   +1 more source

Home - About - Disclaimer - Privacy