Results 271 to 280 of about 2,185,432 (340)
Some of the next articles are maybe not open access.
High-performance Implementation of Elliptic Curve Cryptography Using Vector Instructions
ACM Transactions on Mathematical Software, 2019Elliptic curve cryptosystems are considered an efficient alternative to conventional systems such as DSA and RSA. Recently, Montgomery and Edwards elliptic curves have been used to implement cryptosystems.
Armando Faz-Hernández +2 more
semanticscholar +1 more source
Quantum Resource Estimates for Computing Elliptic Curve Discrete Logarithms
International Conference on the Theory and Application of Cryptology and Information Security, 2017We give precise quantum resource estimates for Shor's algorithm to compute discrete logarithms on elliptic curves over prime fields. The estimates are derived from a simulation of a Toffoli gate network for controlled elliptic curve point addition ...
M. Rötteler +3 more
semanticscholar +1 more source
American Journal of Mathematics, 1931
Zwei ebene Kurven heißen perspektiv, wenn zwischen den Punkten der ersten und den Tangenten der zweiten eine \((1,1)\)-Korrespondenz derart hergestellt werden kann, daß jede Tangente der zweiten durch den entsprechenden Punkt der ersten läuft. So sind z. B.
openaire +2 more sources
Zwei ebene Kurven heißen perspektiv, wenn zwischen den Punkten der ersten und den Tangenten der zweiten eine \((1,1)\)-Korrespondenz derart hergestellt werden kann, daß jede Tangente der zweiten durch den entsprechenden Punkt der ersten läuft. So sind z. B.
openaire +2 more sources
2008
Abstract The congruent number problem. A congruent numberis a rational number qthat is the area of a right triangle, all of whose sides have rational length. We observe that if the triangle has sides a, b, and c, and if sis a rational number, then s2qis also a congruent number whose associated triangle has sides sa, sb,and sc.So it is ...
G H Hardy, E . M Wright
openaire +2 more sources
Abstract The congruent number problem. A congruent numberis a rational number qthat is the area of a right triangle, all of whose sides have rational length. We observe that if the triangle has sides a, b, and c, and if sis a rational number, then s2qis also a congruent number whose associated triangle has sides sa, sb,and sc.So it is ...
G H Hardy, E . M Wright
openaire +2 more sources
The subject of elliptic curves is one of the jewels of nineteenth-century mathematics, originated by Abel, Gauss, Jacobi, and Legendre. This book, reissued with a new Foreword, presents an introductory account of the subject in the style of the original discoverers, with references to and comments about more modern developments.
Henry McKean, Victor Moll, Alex Kasman
openaire +1 more source
Henry McKean, Victor Moll, Alex Kasman
openaire +1 more source
The State of Elliptic Curve Cryptography
Des. Codes Cryptogr., 2000N. Koblitz, A. Menezes, S. Vanstone
semanticscholar +1 more source
The Elliptic Curve Digital Signature Algorithm (ECDSA)
International Journal of Information Security, 2001D. Johnson, A. Menezes, S. Vanstone
semanticscholar +1 more source
A novel image encryption scheme based on an elliptic curve
Signal Processing, 2019Umar Hayat, Naveed Ahmed Azam
semanticscholar +1 more source

