Comparative efficacy of optical correction methods combined with 0.01% atropine in myopia control. [PDF]
Chen M +5 more
europepmc +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
Effect of MDI on the Mechanical Properties of Fibers in Poly(lactic acid)/Poly(butylene succinate) Blends During Melt Spinning. [PDF]
Jeong YD, Cho HJ, Seo MJ, Kim J.
europepmc +1 more source
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli +6 more
wiley +1 more source
Trans-Generational Morphological Trait Plasticity in Parthenogenetic Offspring of Two <i>Brachionus dorcas</i> Morphotypes Induced by <i>Asplanchna</i> Kairomones. [PDF]
Ge Y +6 more
europepmc +1 more source
Molecular Cross‐Linking of MXenes: Tunable Interfaces and Chemiresistive Sensing
In this study, Ti3C2Tx MXenes are initially functionalized using oleylamine ligands to form stable dispersions in an organic solvent. Subsequently ligand exchange with α,ω‐diaminoalkanes enables cross‐linking, along with precise tuning of interfaces. This structural control translates into tunable charge transport and responsive VOC sensing, showing ...
Yudhajit Bhattacharjee +12 more
wiley +1 more source
A Design of Experiment (DoE) Approach to Evaluate the Recyclability of a Polypropylene Copolymer in Medical Technology Under the Aspect of Additive Composition. [PDF]
Espelage N +4 more
europepmc +1 more source
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source

