Results 281 to 290 of about 338,685 (349)
Abstract Despite extensive modeling efforts in extraction research, transient column models are rarely applied in industry due to concerns regarding parameter identifiability and model reliability. To address this, we analyzed uncertainty propagation from estimated parameters in a previously introduced column model and assessed identifiability via ill ...
Andreas Palmtag +2 more
wiley +1 more source
Beyond Frequency Bands: Complementary-Ensemble-Empirical-Mode-Decomposition-Enhanced Microstate Sequence Non-Randomness Analysis for Aiding Diagnosis and Cognitive Prediction of Dementia. [PDF]
Wan W, Gu Z, Peng CK, Cui X.
europepmc +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
The Challenge of Handling Structured Missingness in Integrated Data Sources
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson +6 more
wiley +1 more source
In this work, the Doubao large language model (LLM) is involved in the formula derivation processes for Hubbard U determination regarding the second‐order perturbations of the chemical potential. The core ML tool is optimized for physical domain knowledge, which is not limited to parameter prediction but rather serves as an interactive physical theory ...
Mingzi Sun +8 more
wiley +1 more source
Global Navigation Satellite System Receiver Positioning in Harsh Environments via Clock Bias Prediction by Empirical Mode Decomposition and Back Propagation Neural Network Method. [PDF]
Du L, Chen H, Yuan Y, Song L, Meng X.
europepmc +1 more source
The authors evaluated six machine‐learned interatomic potentials for simulating threshold displacement energies and tritium diffusion in LiAlO2 essential for tritium production. Trained on the same density functional theory data and benchmarked against traditional models for accuracy, stability, displacement energies, and cost, Moment Tensor Potential ...
Ankit Roy +8 more
wiley +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source
This article investigates how persistent homology, persistent Laplacians, and persistent commutative algebra reveal complementary geometric, topological, and algebraic invariants or signatures of real‐world data. By analyzing shapes, synthetic complexes, fullerenes, and biomolecules, the article shows how these mathematical frameworks enhance ...
Yiming Ren, Guo‐Wei Wei
wiley +1 more source

