Results 101 to 110 of about 8,597,032 (385)

Etoposide‐induced cancer cell death: roles of mitochondrial VDAC1 and calpain, and resistance mechanisms

open access: yesMolecular Oncology, EarlyView.
The complex mode of action of the topoisomerase II inhibitor etoposide in triggering apoptosis involves several mechanisms: overexpression of the mitochondrial protein VDAC1, leading to its oligomerization and formation of a large channel that mediates the release of pro‐apoptotic protein; and overexpression of the apoptosis regulators p53, Bax, and ...
Aditya Karunanithi Nivedita   +1 more
wiley   +1 more source

Role of intestinal microecology in the regulation of energy metabolism by dietary polyphenols and their metabolites

open access: yesFood & Nutrition Research, 2019
Background Polyphenols are a class of plant secondary metabolites with a variety of physiological functions. Polyphenols and their intestinal metabolites could greatly affect host energy metabolism via multiple mechanisms. Objective The objective of this
Shaoling Lin   +5 more
semanticscholar   +1 more source

Respiratory complex I‐mediated NAD+ regeneration regulates cancer cell proliferation through the transcriptional and translational control of p21Cip1 expression by SIRT3 and SIRT7

open access: yesMolecular Oncology, EarlyView.
NAD+ regeneration by mitochondrial complex I NADH dehydrogenase is important for cancer cell proliferation. Specifically, NAD+ is necessary for the activities of NAD+‐dependent deacetylases SIRT3 and SIRT7, which suppress the expression of p21Cip1 cyclin‐dependent kinase inhibitor, an antiproliferative molecule, at the translational and transcriptional
Masato Higurashi   +5 more
wiley   +1 more source

Peripheral blood proteome biomarkers distinguish immunosuppressive features of cancer progression

open access: yesMolecular Oncology, EarlyView.
Immune status significantly influences cancer progression. This study used plasma proteomics to analyze benign 67NR and malignant 4T1 breast tumor models at early and late tumor stages. Immune‐related proteins–osteopontin (Spp1), lactotransferrin (Ltf), calreticulin (Calr) and peroxiredoxin 2 (Prdx2)–were associated with systemic myeloid‐derived ...
Yeon Ji Park   +6 more
wiley   +1 more source

Adenosine, Energy Metabolism, and Sleep

open access: yesThe Scientific World Journal, 2003
While the exact function of sleep remains unknown, it is evident that sleep was developed early in phylogenesis and represents an ancient and vital strategy for survival.
Tarja Porkka-Heiskanen   +4 more
doaj   +1 more source

Scale-rich metabolic networks: background and introduction [PDF]

open access: yesarXiv, 2004
Recent progress has clarified many features of the global architecture of biological metabolic networks, which have highly organized and optimized tolerances and tradeoffs (HOT) for functional requirements of flexibility, efficiency, robustness, and evolvability, with constraints on conservation of energy, redox, and many small moieties.
arxiv  

CircCCNB1 inhibits vasculogenic mimicry by sequestering NF90 to promote miR‐15b‐5p and miR‐7‐1‐3p processing in nasopharyngeal carcinoma

open access: yesMolecular Oncology, EarlyView.
CircCCNB1 expression is down‐regulated in nasopharyngeal carcinoma (NPC); thus, less NF90 protein is bound to circCCNB1 and more binds to pri‐miRNAs, blocking their (pri‐miRNAs) binding to DGCR8 and inhibiting the processing and generation of miR‐15b‐5p/miR‐7‐1‐3p. Furthermore, decreased miR‐15b‐5p/miR‐7‐1‐3p promotes the expression of the target genes
Chunmei Fan   +6 more
wiley   +1 more source

Energy metabolism of white adipose tissue and insulin resistance in humans

open access: yesEuropean Journal of Clinical Investigation, 2018
Insulin resistance not only occurs in obesity, but also in lipodystrophy. Although adipose tissue mass affects metabolic fluxes and participates in interorgan crosstalk, the role of energy metabolism within white adipose tissue for insulin resistance is ...
K. Bódis, M. Roden
semanticscholar   +1 more source

TOMM20 as a driver of cancer aggressiveness via oxidative phosphorylation, maintenance of a reduced state, and resistance to apoptosis

open access: yesMolecular Oncology, EarlyView.
TOMM20 increases cancer aggressiveness by maintaining a reduced state with increased NADH and NADPH levels, oxidative phosphorylation (OXPHOS), and apoptosis resistance while reducing reactive oxygen species (ROS) levels. Conversely, CRISPR‐Cas9 knockdown of TOMM20 alters these cancer‐aggressive traits.
Ranakul Islam   +9 more
wiley   +1 more source

Non-universal Interspecific Allometric Scaling of Metabolism [PDF]

open access: yesarXiv, 2008
We extend a previously theory for the interspecific allometric scaling developed in a $d+1$-dimensional space of metabolic states. The time, which is characteristic of all biological processes, is included as an extra dimension to $d$ biological lengths.
arxiv  

Home - About - Disclaimer - Privacy