Results 11 to 20 of about 2,136,192 (344)

SPECIFICATION TESTING FOR ERRORS-IN-VARIABLES MODELS [PDF]

open access: yesEconometric Theory, 2020
This paper considers specification testing for regression models with errors-in-variables and proposes a test statistic comparing the distance between the parametric and nonparametric fits based on deconvolution techniques. In contrast to the methods proposed by Hall and Ma (2007, Annals of Statistics, 35, 2620–2638) and Song (2008, Journal of ...
Otsu, Taisuke, Taylor, Luke
openaire   +3 more sources

Errors-in-variables beta regression models [PDF]

open access: yesJournal of Applied Statistics, 2014
Beta regression models provide an adequate approach for modeling continuous outcomes limited to the interval (0, 1). This paper deals with an extension of beta regression models that allow for explanatory variables to be measured with error. The structural approach, in which the covariates measured with error are assumed to be random variables, is ...
Carrasco, J.   +2 more
openaire   +5 more sources

Error-in-variables modelling for operator learning.

open access: yesProposed for presentation at the MSML22 in ,, 2022
Deep operator learning has emerged as a promising tool for reduced-order modelling and PDE model discovery. Leveraging the expressive power of deep neural networks, especially in high dimensions, such methods learn the mapping between functional state variables. While proposed methods have assumed noise only in the dependent variables, experimental and
Patel, Ravi G.   +3 more
openaire   +2 more sources

Efficient Estimation in the Errors in Variables Model

open access: yesThe Annals of Statistics, 1987
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
P. Bickel, Y. Ritov
semanticscholar   +4 more sources

Errors-in-Variables Modeling of Personalized Treatment-Response Trajectories [PDF]

open access: yesIEEE Journal of Biomedical and Health Informatics, 2021
Estimating the effect of a treatment on a given outcome, conditioned on a vector of covariates, is central in many applications. However, learning the impact of a treatment on a continuous temporal response, when the covariates suffer extensively from measurement error and even the timing of the treatments is uncertain, has not been addressed.
Alizadeh Ashrafi, Reza   +5 more
openaire   +6 more sources

Identifiability of logistic regression with homoscedastic error: Berkson model

open access: yesModern Stochastics: Theory and Applications, 2015
We consider the Berkson model of logistic regression with Gaussian and homoscedastic error in regressor. The measurement error variance can be either known or unknown. We deal with both functional and structural cases.
Sergiy Shklyar
doaj   +1 more source

Fitting an Equation to Data Impartially

open access: yesMathematics, 2023
We consider the problem of fitting a relationship (e.g., a potential scientific law) to data involving multiple variables. Ordinary (least squares) regression is not suitable for this because the estimated relationship will differ according to which ...
Chris Tofallis
doaj   +1 more source

High-dimensional Linear Regression for Dependent Data with Applications to Nowcasting

open access: yes, 2022
Recent research has focused on $\ell_1$ penalized least squares (Lasso) estimators for high-dimensional linear regressions in which the number of covariates $p$ is considerably larger than the sample size $n$.
Han, Yuefeng, Tsay, Ruey S.
core   +1 more source

Solution for a time-series AR model based on robust TLS estimation

open access: yesGeomatics, Natural Hazards & Risk, 2019
We discuss an algorithm for the autoregression (AR) model as a typical time-series model. By analyzing the structure of the AR model, we highlight the shortcomings of traditional algorithms for model parameter estimation and propose an approach to ...
Yeqing Tao, Qiaoning He, Yifei Yao
doaj   +1 more source

CO-REGISTRATION OF 3D POINT CLOUDS BY USING AN ERRORS-IN-VARIABLES MODEL [PDF]

open access: yesThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2012
Co-registration of point clouds of partially scanned objects is the first step of the 3D modeling workflow. The aim of co-registration is to merge the overlapping point clouds by estimating the spatial transformation parameters. In the literature, one of
U. Aydar   +3 more
doaj   +1 more source

Home - About - Disclaimer - Privacy