Results 271 to 280 of about 1,276,723 (390)

Comprehensive Understanding of Accelerated Kinetics Driven by Anion–Diluent Dynamics Enabling Wide Temp Operation in Dual‐Ion Batteries

open access: yesAdvanced Materials, EarlyView.
The transient interactions between TFSI− anions and a diluent within an anion‐dictated electrolyte are revealed, which can reduce interfacial reorganization energy, thereby accelerating ion kinetics and markedly facilitating sustainable anion storage in high‐voltage graphite cathodes for dual‐ion batteries at fast charge and wide temperature range ...
Sungho Kim   +9 more
wiley   +1 more source

Azaporphyrinoid‐Based Photo‐ and Electroactive Architectures for Advanced Functional Materials

open access: yesAdvanced Materials, EarlyView.
A long‐standing collaboration between the Torres and Guldi groups has yielded diverse azaporphyrinoid‐based donor‐acceptor nanohybrids with promising applications in solar energy conversion. This conspectus highlights key molecular platforms and structure‐function relationships that govern light and charge management, supporting the rational design of ...
Jorge Labella   +3 more
wiley   +1 more source

Silapropofol: Carbon-Silicon Isosterism in a Key Anesthetic Scaffold. [PDF]

open access: yesACS Omega
Koschabek S   +3 more
europepmc   +1 more source

Molecular Surface Engineering of Sulfide Electrolytes with Enhanced Humidity Tolerance for Robust Lithium Metal All‐Solid‐State Batteries

open access: yesAdvanced Materials, EarlyView.
It is demonstrated that the electrochemical, interfacial, and humidity stability of halide‐doped sulfide electrolytes (LPSClBr) is significantly enhanced by an organic surface coating using octadecyl phosphonic acid (OPA) and its lithiated form (Li‐OPA). This single‐step strategy enables robust interfacial protection, supports lithium metal anodes, and
Laras Fadillah   +9 more
wiley   +1 more source

Improving Ionic Conformality Across Polymer Electrolyte|Electrode Interfaces

open access: yesAdvanced Materials, EarlyView.
Polymer electrolytes typically form physically intimate electrode interfaces but often fail to maintain continuous ionic pathways, critically limiting battery performance. Through strategic compositional design, this study introduces a molecular ionic composite electrolyte that effectively reduces interfacial ionic depletion, ensuring consistent ion ...
Jungki Min   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy