Results 161 to 170 of about 324,947 (344)

An Ultrafast Self‐Gelling Versatile Hydrogel for Rapid Infected Burn Wound Repair in Military Medicine

open access: yesAdvanced Functional Materials, EarlyView.
A self‐gelling PG@PAC (POD/Gel‐CDH@PA/CHX) powder is developed for infected burn care in austere settings. Upon contact with wound exudate, it instantly forms an adhesive hydrogel, providing simultaneous hemostasis, broad‐spectrum antibacterial activity, reactive oxygen species scavenging, and immunomodulation. In a murine model of S.
Liping Zhang   +14 more
wiley   +1 more source

Membrane Fusion‐Inspired Nanomaterials: Emerging Strategies for Infectious Disease and Cancer Diagnostics

open access: yesAdvanced Healthcare Materials, EarlyView.
Membrane fusion‐inspired nanomaterials offer transformative potential in diagnostics by mimicking natural fusion processes to achieve highly sensitive and specific detection of disease biomarkers. This review highlights recent advancements in nanomaterial functionalization strategies, signal amplification systems, and stimuli‐responsive fusion designs,
Sojeong Lee   +9 more
wiley   +1 more source

Mechanical and Electrical Phenotype of hiPSC‐Cardiomyocytes on Fibronectin‐Based Hydrogels

open access: yesAdvanced Healthcare Materials, EarlyView.
We introduce fibronectin‐based PEG hydrogels with controlled rigidity to enable the culture of iPSC‐derived cardiomyocytes. These substrates offer an alternative to the current culture of these cells on fibronectin‐coated glass, providing enhanced structural and functional behavior. The system provides a more physiologically relevant platform to assess
Ana Da Silva Costa   +8 more
wiley   +1 more source

Xeno‐Free Biocompatible Peptide‐Based Bioinks Reinforced with Cellulose Nanofibers for 3D Printing

open access: yesAdvanced Healthcare Materials, EarlyView.
A xeno‐free bioink combining self‐assembled peptides and cellulose nanofibers is developed for 3D printing. The bioink forms a non‐cross‐linked 3D scaffold, mimicking the extracellular matrix and supporting over 95% cell viability. This approach offers enhanced biocompatibility and mechanical stability, advancing 3D printing for personalized medicine ...
Francesca Netti   +5 more
wiley   +1 more source

Ultrasound‐Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy