Results 11 to 20 of about 210,628 (307)

Modern Particle Physics Event Generation with WHIZARD [PDF]

open access: goldJournal of Physics: Conference Series, 2015
We describe the multi-purpose Monte-Carlo event generator WHIZARD for the simulation of high-energy particle physics experiments. Besides the presentation of the general features of the program like SM physics, BSM physics, and QCD effects, special emphasis will be given to the support of the most accurate simulation of the collider environments at ...
Jürgen Reuter   +6 more
semanticscholar   +9 more sources

Efficient discrete-event based particle tracking simulation for high energy physics [PDF]

open access: greenComputer Physics Communications, 2020
Accepted for publication in Computer Physics ...
Lucio Santi, L. Rossi, Rodrigo Castro
openalex   +6 more sources

End-to-end simulation of particle physics events with flow matching and generator oversampling [PDF]

open access: goldMachine Learning: Science and Technology
Abstract The simulation of high-energy physics collision events is a key element for data analysis at present and future particle accelerators. The comparison of simulation predictions to data allows looking for rare deviations that can be due to new phenomena not previously observed.
Francesco Vaselli   +3 more
  +8 more sources

Machine learning and LHC event generation [PDF]

open access: yesSciPost Physics, 2023
First-principle simulations are at the heart of the high-energy physics research program. They link the vast data output of multi-purpose detectors with fundamental theory predictions and interpretation.
Anja Butter, Tilman Plehn, Steffen Schumann, Simon Badger, Sascha Caron, Kyle Cranmer, Francesco Armando Di Bello, Etienne Dreyer, Stefano Forte, Sanmay Ganguly, Dorival Gonçalves, Eilam Gross, Theo Heimel, Gudrun Heinrich, Lukas Heinrich, Alexander Held, Stefan Höche, Jessica N. Howard, Philip Ilten, Joshua Isaacson, Timo Janßen, Stephen Jones, Marumi Kado, Michael Kagan, Gregor Kasieczka, Felix Kling, Sabine Kraml, Claudius Krause, Frank Krauss, Kevin Kröninger, Rahool Kumar Barman, Michel Luchmann, Vitaly Magerya, Daniel Maitre, Bogdan Malaescu, Fabio Maltoni, Till Martini, Olivier Mattelaer, Benjamin Nachman, Sebastian Pitz, Juan Rojo, Matthew Schwartz, David Shih, Frank Siegert, Roy Stegeman, Bob Stienen, Jesse Thaler, Rob Verheyen, Daniel Whiteson, Ramon Winterhalder, Jure Zupan
doaj   +2 more sources

Event-by-Event Investigation of the Two-Particle Source Function in Heavy-Ion Collisions with EPOS [PDF]

open access: yesEntropy, 2022
Exploring the shape of the pair-source function for particles such as pions or kaons has been an important goal of heavy-ion physics, and substantial effort has been made in order to understand the underlying physics behind the experimental observations ...
Dániel Kincses   +2 more
doaj   +2 more sources

Interpretable Joint Event-Particle Reconstruction for Neutrino Physics at NOvA with Sparse CNNs and Transformers

open access: green, 2023
The complex events observed at the NOvA long-baseline neutrino oscillation experiment contain vital information for understanding the most elusive particles in the standard model. The NOvA detectors observe interactions of neutrinos from the NuMI beam at Fermilab. Associating the particles produced in these interaction events to their source particles,
А. Н. Шмаков   +3 more
openalex   +4 more sources

Dark matter inverse problem: Extracting particle physics from scattering events

open access: hybridPhysical Review D, 2012
32 pages, 14 figures; references updated; revised to match journal ...
Samuel D. McDermott   +2 more
openalex   +7 more sources

Deep Learning Approaches for BSM Physics: Evaluating DNN and GNN Performance in Particle Collision Event Classification [PDF]

open access: goldActa Physica Polonica B
Detecting Beyond Standard Model (BSM) signals in high-energy particle collisions presents significant challenges due to complex data and the need to differentiate rare signal events from Standard Model (SM) backgrounds. This study investigates the efficacy of deep learning models, specifically Deep Neural Networks (DNNs) and Graph Neural Networks (GNNs)
A. Çelik
  +6 more sources

Simulation of Solar Energetic Particle Events Originated from Coronal Mass Ejection Shocks with a Data-driven Physics-based Transport Model [PDF]

open access: goldThe Astrophysical Journal
Abstract Solar energetic particle (SEP) events are associated with coronal mass ejections (CMEs) and/or solar flares. SEPs travel through the corona and interplanetary space to reach Earth, posing a radiation hazard to spacecraft and astronauts working in space and the electronics on spacecraft.
Lei Cheng   +3 more
  +6 more sources

Event generators for high-energy physics experiments [PDF]

open access: yesSciPost Physics, 2022
We provide an overview of the status of Monte-Carlo event generators for high-energy particle physics. Guided by the experimental needs and requirements, we highlight areas of active development, and opportunities for future improvements.
J. M. Campbell, M. Diefenthaler, T. J. Hobbs, S. Höche, J. Isaacson, F. Kling, S. Mrenna, J. Reuter, S. Alioli, J. R. Andersen, C. Andreopoulos, A. M. Ankowski, E. C. Aschenauer, A. Ashkenazi, M. D. Baker, J. L. Barrow, M. van Beekveld, G. Bewick, S. Bhattacharya, C. Bierlich, E. Bothmann, P. Bredt, A. Broggio, A. Buckley, A. Butter, J. M. Butterworth, E. P. Byrne, C. M. Carloni-Calame, S. Chakraborty, X. Chen, M. Chiesa, J. T. Childers, J. Cruz-Martinez, J. Currie, N. Darvishi, M. Dasgupta, A. Denner, F. A. Dreyer, S. Dytman, B. K. El-Menoufi, T. Engel, S. Ferrario Ravasio, D. Figueroa, L. Flower, J. R. Forshaw, R. Frederix, A. Friedland, S. Frixione, H. Gallagher, K. Gallmeister, S. Gardiner, R. Gauld, J. Gaunt, A. Gavardi, T. Gehrmann, A. Gehrmann-De Ridder, L. Gellersen, W. Giele, S. Gieseke, F. Giuli, E. W. N. Glover, M. Grazzini, A. Grohsjean, C. Gütschow, K. Hamilton, T. Han, R. Hatcher, G. Heinrich, I. Helenius, O. Hen, V. Hirschi, M. Höfer, J. Holguin, A. Huss, P. Ilten, S. Jadach, A. Jentsch, S. P. Jones, W. Ju, S. Kallweit, A. Karlberg, T. Katori, M. Kerner, W. Kilian, M. M. Kirchgaeßer, S. Klein, M. Knobbe, C. Krause, F. Krauss, J. Lang, J. -N. Lang, G. Lee, S. W. Li, M. A. Lim, J. M. Lindert, D. Lombardi, L. Lönnblad, M. Löschner, N. Lurkin, Y. Ma, P. Machado, V. Magerya, A. Maier, I. Majer, F. Maltoni, M. Marcoli, G. Marinelli, M. R. Masouminia, P. Mastrolia, O. Mattelaer, J. Mazzitelli, J. McFayden, R. Medves, P. Meinzinger, J. Mo, P. F. Monni, G. Montagna, T. Morgan, U. Mosel, B. Nachman, P. Nadolsky, R. Nagar, Z. Nagy, D. Napoletano, P. Nason, T. Neumann, L. J. Nevay, O. Nicrosini, J. Niehues, K. Niewczas, T. Ohl, G. Ossola, V. Pandey, A. Papadopoulou, A. Papaefstathiou, G. Paz, M. Pellen, G. Pelliccioli, T. Peraro, F. Piccinini, L. Pickering, J. Pires, W. Placzek, S. Plätzer, T. Plehn, S. Pozzorini, S. Prestel, C. T. Preuss, A. C. Price, S. Quackenbush, E. Re, D. Reichelt, L. Reina, C. Reuschle, P. Richardson, M. Rocco, N. Rocco, M. Roda, A. Rodriguez Garcia, S. Roiser, J. Rojo, L. Rottoli, G. P. Salam, M. Schönherr, S. Schuchmann, S. Schumann, R. Schürmann, L. Scyboz, M. H. Seymour, F. Siegert, A. Signer, G. Singh Chahal, A. Siódmok, T. Sjöstrand, P. Skands, J. M. Smillie, J. T. Sobczyk, D. Soldin, D. E. Soper, A. Soto-Ontoso, G. Soyez, G. Stagnitto, J. Tena-Vidal, O. Tomalak, F. Tramontano, S. Trojanowski, Z. Tu, S. Uccirati, T. Ullrich, Y. Ulrich, M. Utheim, A. Valassi, A. Verbytskyi, R. Verheyen, M. Wagman, D. Walker, B. R. Webber, L. Weinstein, O. White, J. Whitehead, M. Wiesemann, C. Wilkinson, C. Williams, R. Winterhalder, C. Wret, K. Xie, T-Z. Yang, E. Yazgan, G. Zanderighi, S. Zanoli, K. Zapp
doaj   +2 more sources

Home - About - Disclaimer - Privacy