Results 181 to 190 of about 34,683 (312)

Universally Accurate or Specifically Inadequate? Stress‐Testing General Purpose Machine Learning Interatomic Potentials

open access: yesAdvanced Intelligent Discovery, EarlyView.
We investigate MACE‐MP‐0 and M3GNet, two general‐purpose machine learning potentials, in materials discovery and find that both generally yield reliable predictions. At the same time, both potentials show a bias towards overstabilizing high energy metastable states. We deduce a metric to quantify when these potentials are safe to use.
Konstantin S. Jakob   +2 more
wiley   +1 more source

What to Make and How to Make It: Combining Machine Learning and Statistical Learning to Design New Materials

open access: yesAdvanced Intelligent Discovery, EarlyView.
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley   +1 more source

Metaconcepts of Rooted Tree Balance. [PDF]

open access: yesBull Math Biol
Fischer M, Hamann TN, Wicke K.
europepmc   +1 more source

Inverse Design of Alloys via Generative Algorithms: Optimization and Diffusion within Learned Latent Space

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work presents a novel generative artificial intelligence (AI) framework for inverse alloy design through operations (optimization and diffusion) within learned compact latent space from variational autoencoder (VAE). The proposed work addresses challenges of limited data, nonuniqueness solutions, and high‐dimensional spaces.
Mohammad Abu‐Mualla   +4 more
wiley   +1 more source

The Challenge of Handling Structured Missingness in Integrated Data Sources

open access: yesAdvanced Intelligent Discovery, EarlyView.
As data integration becomes ever more prevalent, a new research question that emerges is how to handle missing values that will inevitably arise in these large‐scale integrated databases? This missingness can be described as structured missingness, encompassing scenarios involving multivariate missingness mechanisms and deterministic, nonrandom ...
James Jackson   +6 more
wiley   +1 more source

A model of mobile robots in networks with resolvability properties. [PDF]

open access: yesPLoS One
Camacho Campos C   +4 more
europepmc   +1 more source

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy