Results 191 to 200 of about 21,652,126 (285)

Cell density–dependent nuclear‐cytoplasmic shuttling of SETDB1 integrates with Hippo signaling to regulate YAP1‐mediated transcription

open access: yesFEBS Letters, EarlyView.
At low cell density, SETDB1 and YAP1 accumulate in the nucleus. As cell density increases, the Hippo pathway is gradually activated, and SETDB1 is associated with increased YAP1 phosphorylation. At high cell density, phosphorylated YAP1 is sequestered in the cytoplasm, while SETDB1 becomes polyubiquitinated and degraded by the ubiquitin–proteasome ...
Jaemin Eom   +3 more
wiley   +1 more source

MetaLabs project [PDF]

open access: yes, 2009
Factor, Simon, Ferguson, Paul
core  

Depression Is a Risk Factor for Rehospitalization in Medical Inpatients

open access: bronze, 2007
Anand Kartha   +7 more
openalex   +2 more sources

The Innovation of the characterisation factor estimation for LCA in the USETOX model

open access: bronze, 2020
Alexandra Belyanovskaya   +4 more
openalex   +2 more sources

Inhibiting stearoyl‐CoA desaturase suppresses bone metastatic prostate cancer by modulating cellular stress, mTOR signaling, and DNA damage response

open access: yesFEBS Letters, EarlyView.
Bone metastasis in prostate cancer (PCa) patients is a clinical hurdle due to the poor understanding of the supportive bone microenvironment. Here, we identify stearoyl‐CoA desaturase (SCD) as a tumor‐promoting enzyme and potential therapeutic target in bone metastatic PCa.
Alexis Wilson   +7 more
wiley   +1 more source

The (Glg)ABCs of cyanobacteria: modelling of glycogen synthesis and functional divergence of glycogen synthases in Synechocystis sp. PCC 6803

open access: yesFEBS Letters, EarlyView.
We reconstituted Synechocystis glycogen synthesis in vitro from purified enzymes and showed that two GlgA isoenzymes produce glycogen with different architectures: GlgA1 yields denser, highly branched glycogen, whereas GlgA2 synthesizes longer, less‐branched chains.
Kenric Lee   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy