Results 191 to 200 of about 3,730,308 (380)

Effect of carbon content and drawing strain on the fatigue behavior of tire cord filaments

open access: yesEngineering Science and Technology, an International Journal, 2018
In this work we aim to investigate fatigue strengths of the steel filaments in diameter of 0.25 mm with three different Carbon (0.70%C, 0.80%C and 0.90%C) and with four different drawing strains (3.25, 3.37, 3.71 and 3.76) by the pure bending test method.
Huseyin Koymatcik   +3 more
doaj  

Therapeutic Implants: Mechanobiologic Enhancement of Osteogenic, Angiogenic, and Myogenic Responses in Human Mesenchymal Stem Cells on 3D‐Printed Titanium Truss

open access: yesAdvanced Healthcare Materials, EarlyView.
This study investigates a synergistic effect between 3D‐printed surface features and mechanical micro‐strain in enhancing the osteogenic, angiogenic, and myogenic responses of human mesenchymal stem cells (hMSCs). Load‐induced mechanotransduction, facilitated by the implant's architectural design, significantly amplifies hMSC differentiation.
Se‐Hwan Lee   +9 more
wiley   +1 more source

Probabilistic multiscale models and measurements of self-heating under multiaxial high cycle fatigue

open access: yes, 2010
WOSInternational audienceDifferent approaches have been proposed to link high cycle fatigue properties to thermal measurements under cyclic loadings, usually referred to as “self-heating tests.” This paper focuses on two models whose parameters are tuned
Calloch, Sylvain   +4 more
core   +1 more source

Effects of two grading techniques of zirconia material on the fatigue limit of full-contour 3-unit fixed dental prostheses. [PDF]

open access: yesDent Mater, 2017
Villefort RF   +7 more
europepmc   +1 more source

3D Bioprinting‐Assisted Engineering of Stem Cell‐Laden Hybrid Biopatches With Distinct Geometric Patterns Considering the Mechanical Characteristics of Regular and Irregular Connective Tissues

open access: yesAdvanced Healthcare Materials, EarlyView.
A hybrid biopatch platform integrating 3D printed polymeric patterns with stem cell‐laden collagen bioinks is developed to mimic the mechanical properties of connective tissues. By tailoring geometric architectures, the constructs replicate anisotropic or isotropic mechanics, enhancing tissue‐specific regeneration.
Minjun Ahn   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy