Results 281 to 290 of about 2,861,718 (346)

Oral Dosed Organo‐Silica Nanoparticles Restore Glucose Homeostasis and β‐Cell Function in Diabetes Rats

open access: yesAdvanced Functional Materials, EarlyView.
An oral nanoplatform, MOP@T@D, which can maintain glucose homeostasis and restore islet β cells in diabetic rats is developed. It achieves efficient intestinal absorption and liver‐targeted delivery. The nanoparticle disintegrates only in response to hyperglycemia to release insulin on demand and provides antioxidant protection through selenoprotein ...
Chenxiao Chu   +14 more
wiley   +1 more source

Methanol feeding strategies for high-yield production of a collagen-based protein in Komagataella phaffii. [PDF]

open access: yesAppl Microbiol Biotechnol
Ebbecke JP   +5 more
europepmc   +1 more source

Effective Sliding Motions of Vibration‐Induced Emission Stoppers in Mechanically Interlocked Molecules as Artificial Muscle Tougheners and In Situ Molecular Shuttling Sensors for Self‐Healable Mechano‐Fluorescent Polyurethane Organogels

open access: yesAdvanced Functional Materials, EarlyView.
The self‐healable ratiometric mechano‐fluorescent polyurethane (PU) organogel is constructed by incorporating a minor amount (ca. 1.5 wt.%) of the unconventional daisy chain rotaxane (as an artificial molecular muscle toughener) with specific sliding motions and ratiometric emission behaviors into the PU skeleton, which reveals the progressed intrinsic
Tu Thi Kim Cuc   +7 more
wiley   +1 more source

Smarter Sensors Through Machine Learning: Historical Insights and Emerging Trends across Sensor Technologies

open access: yesAdvanced Functional Materials, EarlyView.
This review highlights how machine learning (ML) algorithms are employed to enhance sensor performance, focusing on gas and physical sensors such as haptic and strain devices. By addressing current bottlenecks and enabling simultaneous improvement of multiple metrics, these approaches pave the way toward next‐generation, real‐world sensor applications.
Kichul Lee   +17 more
wiley   +1 more source

From Waste to Value: Conversion of Calcium Sulfate to Vaterite via Carbon Capture and Storage

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a new concept for carbon management that relies on the carbonation of industrial gypsum waste and yields phase‐pure vaterite at ambient conditions without any additives. The obtained vaterite is further shown to be a reactive material that develops compressive strength in aqueous suspensions like conventional cements.
Carlos Pimentel   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy