Results 41 to 50 of about 334,237 (330)
Novel ferrocene derivatives (e.g., FcPhc2) are used as an ultrathin layer hole‐blocking layer, reducing hole injection from the Ag contact. This results in an ultralow noise spectral density of 1.2 × 10−14 A Hz−1/2, and a high specific detectivity of 8.1 × 1012 Jones at −0.5 V.
Eunyoung Hong +16 more
wiley +1 more source
Transition from electron accumulation to depletion at InGaN surfaces [PDF]
The composition dependence of the Fermi-level pinning at the oxidized (0001) surfaces of n-type InxGa1−xN films ...
Chalker, P. R. +8 more
core +1 more source
This work explores Li‐substituted P2 layered oxides for Na‐ion batteries by crystallographic and electrochemical studies. The effect of lithium on superstructure orderings, on phase transitions during synthesis and electrochemical cycling and on the interplay of O‐ versus TM‐redox is revealed via various advanced techniques, including semi‐simultaneous
Mingfeng Xu +5 more
wiley +1 more source
A spin group (SG)‐based mechanism is proposed to realize a single pair of Weyl points. PT‐symmetric nodal lines (NLs) persist under T‐breaking, protected by the combination of SG and P symmetry. When considering spin‐orbit coupling, the SG‐protected NL will split into Weyl points, which will also induce anomalous transport phenomena arising from ...
Shifeng Qian +6 more
wiley +1 more source
Fermi Level Position at Semiconductor Surfaces [PDF]
There have been several recent reports of barrier height studies on metal-semiconductor interfaces. Metals of widely different work functions evaporated onto Si and GaAs surfaces indicated that in each case the energy difference between the semiconductor conduction band edge and Fermi level at the interface,φ_(Bn), was essentially independent of the
Mead, C. A., Spitzer, W. G.
openaire +2 more sources
Electronic structure of triangular, hexagonal and round graphene flakes near the Fermi level
The electronic shell structure of triangular, hexagonal and round graphene quantum dots (flakes) near the Fermi level has been studied using a tight-binding method.
Berger C +12 more
core +1 more source
Synchrotron Radiation for Quantum Technology
Materials and interfaces underpin quantum technologies, with synchrotron and FEL methods key to understanding and optimizing them. Advances span superconducting and semiconducting qubits, 2D materials, and topological systems, where strain, defects, and interfaces govern performance.
Oliver Rader +10 more
wiley +1 more source
Although great achievements have been obtained in metasurfaces so far, the functionalities of these devices are almost static. The dynamically adjustable devices are far less explored.
Xiongjun Shang +6 more
doaj +1 more source
Fermi Level Engineering for Large Permittivity in BaTiO3-Based Multilayers
Multilayered doped BaTiO3 thin films have been fabricated by physical vapor deposition (PVD) on low-cost polycrystalline substrates with the aim to improve dielectric properties by controlling point charge defects at the interfaces.
Christopher Castro Chavarría +4 more
doaj +1 more source
Fermi level pinning at the Ge(001) surface - A case for non-standard explanation
To explore the origin of the Fermi level pinning in germanium we investigate the Ge(001) and Ge(001):H surfaces. The absence of relevant surface states in the case of Ge(001):H should unpin the surface Fermi level. This is not observed.
Godlewski, Szymon +6 more
core +1 more source

