Results 261 to 270 of about 443,911 (328)
Bioprinting Organs—Science or Fiction?—A Review From Students to Students
Bioprinting artificial organs has the potential to revolutionize the medical field. This is a comprehensive review of the bioprinting workflow delving into the latest advancements in bioinks, materials and bioprinting techniques, exploring the critical stages of tissue maturation and functionality.
Nicoletta Murenu +18 more
wiley +1 more source
Steady-state versus burst lasing techniques for thulium fiber laser. [PDF]
Sierra A +8 more
europepmc +1 more source
Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial‐temporal manner, and trigger ...
Sonya Ghanavati +12 more
wiley +1 more source
Wavelength-Switchable Ytterbium-Doped Mode-Locked Fiber Laser Based on a Vernier Effect Filter. [PDF]
Xu H +6 more
europepmc +1 more source
This study introduces the first miniaturized, patient‐specific carotid artery model created via 3D printing using GelMA with embedded vascular cells. Combining CFD, PIV, and flow perfusion, the model replicates anatomically dependent hemodynamics and cellular responses.
Jorge A. Catano +7 more
wiley +1 more source
Implementation of multiple soliton state fiber laser using a promising saturable absorber of silver indium phosphorus sulfide. [PDF]
Liu S +8 more
europepmc +1 more source
This work presents a novel, dynamically perfused, configurable microfluidic system for epidermis‐only (E and full‐thickness skin (FT SoC) growth, emulating human skin structure and barrier function. Upon TiO2 nanoparticle exposure, the system reveals compromised barrier integrity, reduced metabolic activity, increased permeability, and chemokine‐driven
Samantha Costa +7 more
wiley +1 more source
A human cell‐based microphysiological system integrates engineered muscle tissues with an inflamed adipose–macrophage niche to model obese microenvironment‐induced muscle dysfunction. Muscle contraction is quantified by pillar deflection coupled with computational stiffness estimation. Secretome and transcriptomic profiling reveal inflammation‐mediated
Seunggyu Kim +16 more
wiley +1 more source
With great power comes great risk: High ureteral stricture rate after high-power, high-frequency Thulium fiber laser lithotripsy in ureteroscopy. [PDF]
Villani R +10 more
europepmc +1 more source

