Results 31 to 40 of about 1,804,204 (295)
In this paper, we use q-derivative operator to define a new class of q-starlike functions associated with k-Fibonacci numbers. This newly defined class is a subclass of class A of normalized analytic functions, where class A is invariant (or symmetric ...
M. Shafiq+5 more
semanticscholar +1 more source
Novel Fibonacci and non-Fibonacci structure in the sunflower: results of a citizen science experiment [PDF]
This citizen science study evaluates the occurrence of Fibonacci structure in the spirals of sunflower (Helianthus annuus) seedheads. This phenomenon has competing biomathematical explanations, and our core premise is that observation of both Fibonacci ...
Jonathan Swinton, Erinma Ochu,
doaj +1 more source
On the Inverse of a Fibonacci Number Modulo a Fibonacci Number Being a Fibonacci Number
Let $(F_n)_{n \geq 1}$ be the sequence of Fibonacci numbers. For all integers $a$ and $b \geq 1$ with $\gcd(a, b) = 1$, let $[a^{-1} \!\bmod b]$ be the multiplicative inverse of $a$ modulo $b$, which we pick in the usual set of representatives $\{0, 1, \dots, b-1\}$. Put also $[a^{-1} \!\bmod b] := \infty$ when $\gcd(a, b) > 1$.
openaire +2 more sources
Some Properties of Fibonacci Numbers, Generalized Fibonacci Numbers and Generalized Fibonacci Polynomial Sequences [PDF]
In this paper we study the Fibonacci numbers and derive some interesting properties and recurrence relations. We prove some charecterizations for $F_p$, where $p$ is a prime of a certain type. We also define period of a Fibonacci sequence modulo an integer, $m$ and derive certain interesting properties related to them.
Alexandre Laugier, Manjil P. Saikia
openaire +4 more sources
A weighted extension of Fibonacci numbers
14 pages, comments ...
Bhatnagar, Gaurav+2 more
openaire +3 more sources
On Special Spacelike Hybrid Numbers
Hybrid numbers are generalizations of complex, hyperbolic and dual numbers. A hyperbolic complex structure is frequently used in both pure mathematics and numerous areas of physics.
Anetta Szynal-Liana, Iwona Włoch
doaj +1 more source
A Study on Fibonacci and Lucas Bihypernomials
The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the ...
Szynal-Liana Anetta, Włoch Iwona
doaj +1 more source
Shifted Fibonacci numbers have been examined in the literature in terms of the greatest common divisor, but appropriate definitions and fundamental equations have not been worked on. In this article, we have obtained the Binet formula, which is a fundamental equation used to obtain the necessary element of the shifted Fibonacci number sequence ...
openaire +4 more sources
Bernoulli F-polynomials and Fibo–Bernoulli matrices
In this article, we define the Euler–Fibonacci numbers, polynomials and their exponential generating function. Several relations are established involving the Bernoulli F-polynomials, the Euler–Fibonacci numbers and the Euler–Fibonacci polynomials. A new
Semra Kuş, Naim Tuglu, Taekyun Kim
doaj +1 more source
In this paper, we define and study the bivariate complex Fibonacci and Lucas polynomials. We introduce a operator in order to derive some new symmetric properties of bivariate complex Fibonacci and bivariate complex Lucas polynomials, and give the ...
Boughaba Souhila+2 more
doaj +1 more source