Results 201 to 210 of about 1,789,534 (354)

An Innovative “Tooth‐On‐Chip” Microfluidic Device Emulating the Structure and Physiology of the Dental Pulp Tissue

open access: yesAdvanced Healthcare Materials, EarlyView.
This work presents a “tooth‐on‐chip” device that mimics dental pulp tissue. By co‐culturing key cell types, it recreates vascular networks, stem cell niches, the odontoblast/dentine interface, and trigeminal innervation. This innovative platform provides a unique model of dental pulp structure and physiology, with significant potential for accelerating
Alessandro Cordiale   +6 more
wiley   +1 more source

Biomimetic Fibrinogen Nanofiber Scaffolds for Vascular Hematopoietic Stem Cell Niche Engineering

open access: yesAdvanced Healthcare Materials, EarlyView.
This study presents an advanced in vitro model of the vascular hematopoietic stem cell niche using self‐assembled fibrinogen nanofibers, mimicking the basement membrane in bone marrow (BM) sinusoids. The model supports the coculture of microvascular endothelial cells, stromal cells, and hematopoietic stem and progenitor cells, providing insights into ...
Sophia Lena Meermeyer   +4 more
wiley   +1 more source

Synthetic Aspects and Characterization Needs in MOF Chemistry – from Discovery to Applications

open access: yesAdvanced Materials, EarlyView.
Overcoming the challenges of phase discovery, synthesis optimization and scale‐up, characterization, and computational studies is essential to accelerate the large‐scale application of MOFs. Life‐cycle analyses and techno‐economic analyses need to be performed to realistically assess their potential for industrial relevance.
Bastian Achenbach   +4 more
wiley   +1 more source

Computational Modeling of Reticular Materials: The Past, the Present, and the Future

open access: yesAdvanced Materials, EarlyView.
Reticular materials are advanced materials with applications in emerging technologies. A thorough understanding of material properties at operating conditions is critical to accelerate the deployment at an industrial scale. Herein, the status of computational modeling of reticular materials is reviewed, supplemented with topical examples highlighting ...
Wim Temmerman   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy