Results 141 to 150 of about 1,824,922 (322)

Positive‐Tone Nanolithography of Antimony Trisulfide with Femtosecond Laser Wet‐Etching

open access: yesAdvanced Functional Materials, EarlyView.
A butyldithiocarbamic acid (BDCA) etchant is used to fabricate various micro‐ and nanoscale structures on amorphous antimony trisulfide (a‐Sb2S3) thin film via femtosecond laser etching. Numerical analysis and experimental results elucidate the patterning mechanism on gold (reflective) and quartz (transmissive) substrates.
Abhrodeep Dey   +12 more
wiley   +1 more source

Properties of Ag-GNP silver-graphene composites and finite element analysis of electrical contact coupling field

open access: diamond, 2023
Saibei Wang   +8 more
openalex   +1 more source

Magnetic‐Field Tuning of the Spin Dynamics in the Quasi‐2D Van der Waals Antiferromagnet CuCrP2S6

open access: yesAdvanced Functional Materials, EarlyView.
This study reveals 2D character of the spin dynamics in CuCrP2S6, as well as complex field dependence of collective excitations in the antiferromagnetically ordered state. Their remarkable tuning from the antiferromagnetic to the ferromagnetic type with magnetic field, together with the non‐degeneracy of the magnon gaps favorable for the induction of ...
Joyal John Abraham   +16 more
wiley   +1 more source

Thermoelectric Conductivities at Finite Magnetic Field and the Nernst Effect

open access: green, 2015
Keun-Young Kim   +3 more
openalex   +1 more source

Large Anomalous and Topological Hall Effect and Nernst Effect in a Dirac Kagome Magnet Fe3Ge

open access: yesAdvanced Functional Materials, EarlyView.
Fe3Ge, a Kagome‐lattice magnet, exhibits remarkable anomalous Hall and Nernst effects, with transverse thermoelectric conductivity surpassing or comaprable to some well‐known ferromagnets. First‐principles calculations attribute these to Berry curvature from massive Dirac gaps. Additionally, topological Hall and Nernst signals emerge from field‐induced
Chunqiang Xu   +11 more
wiley   +1 more source

Understanding Decoherence of the Boron Vacancy Center in Hexagonal Boron Nitride

open access: yesAdvanced Functional Materials, EarlyView.
State‐of‐the‐art computations unravel the intricate decoherence dynamics of the boron vacancy center in hexagonal boron nitride across magnetic fields from 0 to 3 T. Five distinct regimes emerge, dominated by nuclear spin interactions, revealing optimal coherence times of 1–20 µs in the 180–350 mT range for isotopically pure samples.
András Tárkányi, Viktor Ivády
wiley   +1 more source

Home - About - Disclaimer - Privacy