Results 281 to 290 of about 314,466 (322)

On a fixed-point theorem

Functional Analysis and Its Applications, 1996
This note has discussed three fixed point theorems for mappings \(T:H\times H\to H\), where \(H\) is a suitable subset of a metric or normed linear space, satisfying certain conditions. Only indications of the proofs are given. The first two theorems are proved with the help of a theorem due to \textit{M. Edelstein} [J. Lond. Math. Soc. 37, 74-79 (1962;
Tran Quoc Binh, Nguyen Minh Chuong
openaire   +3 more sources

A fixed point theorem

Archiv der Mathematik, 1997
We prove a fixed point theorem for the action of a Lie group \(G\) acting isometrically on a non-negatively curved Riemannian manifold with principal orbits which are isotropy irreducible homogeneous spaces. We refine our result when the curvature is positive and give a possible application to the study of immersions of homogeneous spaces into spheres.
openaire   +3 more sources

Some Fixed Point Theorems [PDF]

open access: possibleThe Annals of Mathematics, 1951
where f, p are continuous, g satisfies a Lipschitz condition, p(t) has period 1, and g(t)/I ? 1 for large t at any rate. Our choice of hypotheses and the main lines of our investigations have been dominated by what is significant in the theory of differential equations, but our results are concerned solely with sets of points and transformations of ...
J. E. Littlewood, M. L. Cartwright
openaire   +3 more sources

Fixed Point Theorems

2008
This article gives statements of the Tarski fixed point theorem and the main versions of the topological fixed point principle that have been ...
openaire   +1 more source

Fixed Point Theorems

1987
An economic system, which consists of a number of relationships among the relevant factors, is modelled as a system of equations or inequalities of certain unknowns, whose solution represents a specific state in which the system settles. This is typically exemplified by the Walrasian competitive economy (Walras, 1874), consisting of the interaction of ...
openaire   +2 more sources

Fixed-Point Theorems

1980
In the theory of zero-sum, two-person games the basic theorem was proved by John von Neumann; he used the Brouwer fixed-point theorem. In the theory of many-person games the basic theorem was proved by J. F. Nash; he also used the Brouwer fixed-point theorem. We will prove Nash’s theorem with the Kakutani fixed-point theorem.
openaire   +2 more sources

Home - About - Disclaimer - Privacy