Learning Highly Dynamic Skills Transition for Quadruped Jumping Through Constrained Space
A quadruped robot masters dynamic jumps through constrained spaces with animal‐inspired moves and intelligent vision control. This hierarchical learning approach combines imitation of biological agility with real‐time trajectory planning. Although legged animals are capable of performing explosive motions while traversing confined spaces, replicating ...
Zeren Luo +6 more
wiley +1 more source
Return-to-fly after flow diversion for unruptured paraclinoid aneurysms in military pilots. [PDF]
Zhang H +4 more
europepmc +1 more source
Stable Imitation of Multigait and Bipedal Motions for Quadrupedal Robots Over Uneven Terrains
How are quadrupedal robots empowered to execute complex navigation tasks, including multigait and bipedal motions? Challenges in stability and real‐world adaptation persist, especially with uneven terrains and disturbances. This article presents an imitation learning framework that enhances adaptability and robustness by incorporating long short‐term ...
Erdong Xiao +3 more
wiley +1 more source
A simple method for rapid reconstruction of 3D animal trajectory from monocular video. [PDF]
Qi W +11 more
europepmc +1 more source
Energy Consumption Optimization in Trajectory Planning for Fuel Cell Hybrid Uavs Based On HMPC
The endurance limitation of multirotor drones is a critical challenge. This study adopts a hybrid power system of fuel cells and lithium‐ion batteries. Using Nondominated Sorting Genetic Algorithm II, it integrates trajectory planning with energy management optimization.
Xindi Wang +7 more
wiley +1 more source
A systematic review of the cerebrovascular adaptations following exposure to spaceflight or ground-based analogs: lessons from human and animal studies. [PDF]
Daniel Estrella L +5 more
europepmc +1 more source
Collision‐Resilient Winged Drones Enabled by Tensegrity Structures
Based on structures of birds such as the woodpeck, this article presents the collision‐resilient aerial robot, SWIFT. SWIFT leverages tensegrity structures in the fuselage and wings which allow it to undergo large deformations in a crash, without sustaining damage. Experiments show that SWIFT can reduce impact forces by 70% over conventional structures.
Omar Aloui +5 more
wiley +1 more source
Structural dynamics and neural representation of wing deformation. [PDF]
Yarger AM +6 more
europepmc +1 more source
Strong‐Magnetic Flexible Composites for Magnetically Responsive Soft Robots
This perspective provides an overview of the performance mechanisms, preparation methods, and applications of strong magnetic flexible composite materials in soft actuators (such as gripping, movement, and sensing), and further explores current opportunities and challenges.
Wenwen Li +4 more
wiley +1 more source
Shape, Size and Bilateral Asymmetry of the Humerus and Femur in the Common Swift (<i>Apus apus</i>). [PDF]
Bilgiç EB +7 more
europepmc +1 more source

