Results 211 to 220 of about 2,211,858 (267)

Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications

open access: yesFEBS Open Bio, EarlyView.
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley   +1 more source

Macroscopic flow control of connected and automated vehicles at signalized intersections [PDF]

open access: hybrid
Yifan Yao   +6 more
openalex   +1 more source

BMI‐1 modulation and trafficking during M phase in diffuse intrinsic pontine glioma

open access: yesFEBS Open Bio, EarlyView.
The schematic illustrates BMI‐1 phosphorylation during M phase, which triggers its translocation from the nucleus to the cytoplasm. In cycling cells, BMI‐1 functions within the PRC1 complex to mediate H2A K119 monoubiquitination. Following PTC596‐induced M phase arrest, phosphorylated BMI‐1 dissociates from PRC1 and is exported to the cytoplasm via its
Banlanjo Umaru   +6 more
wiley   +1 more source

The role of endothelial frequency in the cerebral blood flow control during neonatal asphyxia: a retrospective longitudinal study. [PDF]

open access: yesBMC Pediatr
Agudelo-Pérez S   +5 more
europepmc   +1 more source

Cutaneous Melanoma Drives Metabolic Changes in the Aged Bone Marrow Immune Microenvironment

open access: yesAging and Cancer, EarlyView.
Melanoma, the deadliest form of skin cancer, increasingly affects older adults. Our study reveals that melanoma induces changes in iron and lipid levels in the bone marrow, impacting immune cell populations and increasing susceptibility to ferroptosis.
Alexis E. Carey   +12 more
wiley   +1 more source

The Aging Blood: Cellular Origins, Circulating Drivers, and Therapeutic Potential

open access: yesAging and Cancer, EarlyView.
As a conduit linking all organs, the blood system both reflects and actively drives systemic aging. This review highlights how circulating pro‐aging and antiaging factors and age‐associated hematopoietic stem cell dysfunction contribute to immunosenescence and multi‐organ decline, positioning the hematopoietic system as a target for aging intervention.
Hanqing He, Jianwei Wang
wiley   +1 more source

Home - About - Disclaimer - Privacy