Results 241 to 250 of about 218,447 (350)

Bicontinuous Microarchitected Scaffolds Provide Topographic Cues That Govern Neuronal Behavior and Maturation

open access: yesAdvanced Functional Materials, EarlyView.
A scalable biomimetic platform transforms bioinert poly(ethylene glycol) diacrylate into neuroinstructive matrices via integrating solvent transfer‐induced phase separation, microfluidics, and 3D bioprinting. Bicontinuous, hyperbolically curved microporous networks embedded within a fibrous construct elicit rapid adhesion, robust proliferation, and ...
Prince D. Okoro   +8 more
wiley   +1 more source

Next‐Generation Bio‐Reducible Lipids Enable Enhanced Vaccine Efficacy in Malaria and Primate Models

open access: yesAdvanced Functional Materials, EarlyView.
Structure–activity relationship (SAR) optimization of bio‐reducible ionizable lipids enables the development of highly effective lipid nanoparticle (LNP) mRNA vaccines. Lead LNPs show superior tolerability and antibody responses in rodents and primates, outperforming approved COVID‐19 vaccine lipids.
Ruben De Coen   +30 more
wiley   +1 more source

Oligohistidine‐Functionalized Single‐Walled Carbon Nanotube‐Guided RNA Delivery to Improve Shoot Regeneration Efficiency in Plant Calli

open access: yesAdvanced Functional Materials, EarlyView.
The pH‐sensitive His6‐SWNTs, which is functionalized with oligohistidine, can deliver STTM396 molecules into callus cells. The STTM396–SWNT complex treatments enhance shoot regeneration efficiency by regulating the miR396‐GRF module in Arabidopsis and tomato calli.
Yeong Yeop Jeong   +7 more
wiley   +1 more source

A novel class of polymeric fluorescent dyes assembled using a DNA synthesizer. [PDF]

open access: yesPLoS One, 2020
Matray T   +7 more
europepmc   +1 more source

Highly Customizable Scaffold‐Type 3D Microelectrode Array Platform for Design and Analysis of the 3D Neuronal Network In Vitro

open access: yesAdvanced Functional Materials, EarlyView.
An innovative fabrication platform for 3D microelectrode arrays (MEAs) is presented, utilizing a 3D printer and the capillary action of electrically conductive inks. This approach enables the simple and versatile fabrication of 3D MEAs with complex structures.
Dongjo Yoon, Yoonkey Nam
wiley   +1 more source

Home - About - Disclaimer - Privacy