Results 71 to 80 of about 735 (221)

The Largest Subgraph Without A Forbidden Induced Subgraph

open access: yesCombinatorica
20 ...
Fox, Jacob   +2 more
openaire   +2 more sources

Random multilinear maps and the Erdős box problem

open access: yesDiscrete Analysis, 2021
Random multilinear maps and the Erdős box problem, Discrete Analysis 2021:17, 8 pp. A major theme in extremal combinatorics is determining the maximum number of edges that a graph or hypergraph can have if it does not contain a certain fixed graph or ...
David Conlon   +2 more
doaj   +1 more source

Inference of ecological networks and possibilistic dynamics based on Boolean networks from observations and prior knowledge

open access: yesMethods in Ecology and Evolution, Volume 16, Issue 8, Page 1851-1867, August 2025.
Abstract Being able to infer the interactions between a set of species from observations of the system is of paramount importance to obtain explanatory and predictive models in ecology. We tackled this challenge by employing qualitative modelling frameworks and logic methods for the synthesis of mathematical models that can integrate both observations ...
Loïc Paulevé, Cédric Gaucherel
wiley   +1 more source

Coloring Graphs With Forbidden Almost Bipartite Subgraphs

open access: yesRandom Structures &Algorithms, Volume 66, Issue 4, July 2025.
ABSTRACT Alon, Krivelevich, and Sudakov conjectured in 1999 that for every finite graph F$$ F $$, there exists a quantity c(F)$$ c(F) $$ such that χ(G)≤(c(F)+o(1))Δ/logΔ$$ \chi (G)\le \left(c(F)+o(1)\right)\Delta /\mathrm{log}\Delta $$ whenever G$$ G $$ is an F$$ F $$‐free graph of maximum degree Δ$$ \Delta $$. The largest class of connected graphs F$$
James Anderson   +2 more
wiley   +1 more source

Single‐conflict colorings of degenerate graphs

open access: yesJournal of Graph Theory, Volume 109, Issue 2, Page 170-183, June 2025.
Abstract We consider the single‐conflict coloring problem, a graph coloring problem in which each edge of a graph receives a forbidden ordered color pair. The task is to find a vertex coloring such that no two adjacent vertices receive a pair of colors forbidden at an edge joining them.
Peter Bradshaw, Tomáš Masařík
wiley   +1 more source

Optimizing Staircase Motifs in Biofabric Network Layouts

open access: yesComputer Graphics Forum, Volume 44, Issue 3, June 2025.
Abstract Biofabric is a novel method for network visualization, with promising potential to highlight specific network features. Recent studies emphasize the importance of staircase motifs — equivalent to fans or stars in node‐link diagrams — within Biofabric.
Sara Di Bartolomeo   +2 more
wiley   +1 more source

Odd chromatic number of graph classes

open access: yesJournal of Graph Theory, Volume 108, Issue 4, Page 722-744, April 2025.
Abstract A graph is called odd (respectively, even) if every vertex has odd (respectively, even) degree. Gallai proved that every graph can be partitioned into two even induced subgraphs, or into an odd and an even induced subgraph. We refer to a partition into odd subgraphs as an odd colouring of G $G$.
Rémy Belmonte   +3 more
wiley   +1 more source

Forbidden Subgraphs for Hamiltonicity of 1-Tough Graphs

open access: yesDiscussiones Mathematicae Graph Theory, 2016
A graph G is said to be 1-tough if for every vertex cut S of G, the number of components of G − S does not exceed |S|. Being 1-tough is an obvious necessary condition for a graph to be hamiltonian, but it is not sufficient in general.
Li Binlong   +2 more
doaj   +1 more source

ATP‐Dependent Thermo‐Ring Basis for the Heat Unfolding of the First Nucleotide‐Binding Domain Isolated From Human CFTR

open access: yesNatural Sciences, Volume 5, Issue 1-2, April 2025.
The most common cystic fibrosis‐causing F508del mutation is located in the first nucleotide‐binding domain (hNBD1) of the human cystic fibrosis transmembrane conductance regulator (hCFTR). The ATP‐dependent weakest noncovalent bridge in isolated hNBD1 is found between two specific bold residues in the biggest thermo‐ring (highlighted in red) at or near
Guangyu Wang
wiley   +1 more source

Home - About - Disclaimer - Privacy